吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1121-1128.doi: 10.13278/j.cnki.jjuese.20180045

• 地质工程与环境工程 • 上一篇    下一篇

聚合物改性硫化亚铁在饱和多孔介质中的迁移性能

洪梅, 杨慧萍, 陈韶音   

  1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021
  • 收稿日期:2018-03-09 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:洪梅(1972-),女,教授,博士生导师,主要从事污染场地风险评估方面的研究,E-mail:hongmei@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636);吉林省科技发展计划项目(20150204045SF)

Polymer Modified FeS Migration Performance in Saturated Porous Media

Hong Mei, Yang Huiping, Chen Shaoyin   

  1. Key Lab of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China
  • Received:2018-03-09 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41530636) and Project Agreement for Science &Technology Development, Jilin Province (20150204045SF)

摘要: 本文采用羧甲基纤维素钠(CMC)、瓜尔胶(Guar gum)对硫化亚铁(FeS)进行了改性,以增强FeS的稳定性和迁移性。通过实验考察了3种FeS(CMC-FeS、GG-FeS、Nano-FeS)的沉降性能及其在粗、中、细砂3种介质中的迁移性能,并根据胶体过滤理论计算了3种FeS在中砂中的沉积速率及在不同介质中的最大迁移距离。结果表明:改性后FeS的稳定性较高,抗沉降性能CMC-FeS > GG-FeS >> Nano-FeS;由穿透曲线看出,3种FeS在粗、中、细砂中的穿透能力(即出流质量浓度ρi与注入质量浓度ρ0的比值)均为CMC-FeS > GG-FeS > Nano-FeS。粗砂和中砂中CMC-FeS的穿透能力明显高于GG-FeS,但细砂中二者的穿透能力相近,说明瓜尔胶的剪切稀化特性更利于GG-FeS在细颗粒介质中的迁移;FeS注入质量浓度的增加会导致更多的FeS沉积到介质中,但聚合物改性可以显著降低沉积速率,沉积速率CMC-FeS < GG-FeS < Nano-FeS;改性后CMC-FeS和GG-FeS在中砂的最大迁移距离分别是Nano-FeS的6.4倍和2.6倍,增加GG-FeS注入质量浓度对其最大迁移距离影响较小。

关键词: 硫化亚铁, 多孔介质, 硫化亚铁质量浓度, 迁移

Abstract: Nano-FeS was modified by sodium carboxymethyl cellulose (CMC) and guar gum to improve its performance of stability and migration. The sedimentation properties, migration properties, and deposition rates of three kinds of ferrous sulfide (CMC-FeS, GG-FeS, and Nano-FeS) were studied experimentally. According to the theory of colloid filtration, the maximum migration distances of the three kinds of FeS in different media were calculated. The results showed that the anti-settling property was CMC-FeS > GG-FeS >> Nano-FeS, and the polymer improved the suspending stability of FeS. The penetration curves showed that the penetrating ability (the ratio of outflow concentration ρi to injection concentration ρ0) of the three kinds of FeS in three media was CMC-FeS > GG-FeS > Nano-FeS, and the penetration ability of CMC-FeS was higher than that of GG-FeS in coarse and medium sand, but was similar to that of GG-FeS in fine sand. It shows that the shear thinning property of guar gum is more conducive to the migration of GG-FeS in fine granular media. With the increase of FeS concentration,more FeS will be deposited in the medium, but polymer modification can significantly reduce the deposition rate:GG-FeS

Key words: FeS, porous media, FeS concentration, migration

中图分类号: 

  • X523
[1] Paknikar K M, Nagpal V, Pethkar A V, et al. Degradation of Lindane from Aqueous Solutions Using Iron Sulfide Nanoparticles Stabilized by Biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6(3):370-374.
[2] 王夏琳, 李睿华. 利用FeS去除水中硝基苯的试验研究[J]. 环境科学, 2012, 33(12):4346-4351. Wang Xialin, Li Ruihua. Investigation of Nitrobenzene Removal by Iron Sulfide(FeS)[J]. Chinese Journal of Environmental Science, 2012, 33(12):4346-4351.
[3] 陈凡. 纳米FeS的制备及其在含铬污水处理中的应用研究[D]. 上海:同济大学, 2004. Chen Fan. Preparation of Iron Sulfide Nanoparticls and Study on Removal of Chromium(VI) from Wastewater[D]. Shanghai:Tongji University, 2004.
[4] Wolthers M, Charlet L, Weijden C H V D, et al. Arsenic Mobility in the Ambient Sulfidic Environment:Sorption of Arsenic(V) and Arsenic(Ⅲ) onto Disordered Mackinawite[J]. Geochimica et Cosmochimica Acta, 2005, 69(14):3483-3492.
[5] Zhong Xiong, He Feng, Zhao Dongye, et al. Immobilization of Mercury in Sediment Using Stabilized Iron Sulfide Nanoparticles[J]. Water Research, 2009, 43(20):5171-5179.
[6] Zhao Xiao, Liu Wen, Cai Zhengqing, et al. An Overview of Preparation and Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation[J]. Water Research, 2016, 100:245-266.
[7] Cushing B L, Kolesnichenko V L, Charles J O. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J]. Chemical Reviews, 2004, 104(9):3893-3946.
[8] He Feng, Zhao Dongye. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers[J]. Environmental Science and Technology, 2007, 41(17):6216-6221.
[9] Mitzel M R, Tufenkji N. Transport of Industrial PVP-Stabilized Silver Nanoparticles in Saturated Quartz Sand Coated with Pseudomonas Aeruginosa PAO1 Biofilm of Variable Age[J]. Environmental Science and Technology, 2014,48(5):2715-2723.
[10] Alberto T, Loon C K, Rajandrea S, et al. Reduced Aggregation and Sedimentation of Zero-Valent Iron Nanoparticles in the Presence of Guar Gum[J]. Journal of Colloid and Interface Science, 2008, 3249(1):71-79.
[11] 董军, 徐暖, 刘同喆, 等. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1):234-240. Dong Jun, Xu Nuan, Liu Tongzhe, et al. Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil[J]. Journal of Jilin Unviersity(Earth Science Edition), 2018, 48(1):234-240.
[12] He Feng, Zhang Man, Qian Tianwei, et al. Transport of Carboxymethyl Cellulose Stabilized Iron Nanoparticles in Porous Media:Column Experiments and Modeling[J]. Journal of Colloid and Interface Science, 2009, 334(1):96-102.
[13] He Feng, Zhao Dongye, Liu Juncheng, et al. Stabilization of Fe-Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater[J]. Industrial and Engineering Chemistry Research, 2007, 46(1):29-34.
[14] Zhong Xiong, He Feng, Zhao Dongye. Immobilization of Mercury in Sediment Using Stabilized Iron Sulfide Nanoparticles[J]. Water Research, 2009, 43(20):5171-5179.
[15] Wang Xianbiao, Liu Jin, Zhao Donglin, et al. Preparation of CMC-Stablized FeS Nanoparticles and Their Enhanced Performance for Cr(VI) Removal[J]. Advanced Materials Research, 2011, 287:96-99.
[16] Chen Juan, Chen Ri, Hong Mei. Influence of pH on Hexavalent Chromium Reduction by Fe(Ⅱ) and Sulfide Compounds[J]. Water Sci Technol, 2015,72(1):22-28.
[17] Gong Yanyan, Liu Yuanyuan, Zhong Xiong, et.al. Immobilization of Mercury in Field Soil and Sediment Using Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles[J]. Nanotechnology, 2012, 23(29):294007-294019.
[18] 刘伟. 瓜尔豆胶稳定纳米铁的制备及其去除水体中六价铬的研究[D]. 天津:南开大学, 2013. Liu Wei. Synthesis of Guar Gum Stabilized Nanoscale Zero-Valent Iron and Application for Cr(Ⅵ)Removal in Water[D]. Tianjin:Nankai University, 2013.
[19] 乐兰. 绿色聚合物改性纳米零价铁及其对六价铬去除[D]. 昆明:昆明理工大学, 2016. Le Lan.Green Polymer Modified Nano Zero Valent Iron for Removal of Chromium (Ⅵ)[D]. Kunming:Kunming University of Science and Technology, 2016.
[20] Alberto T, Rajandrea S. Enhanced Transport of Zerovalent Iron Nanoparticles in Saturated Porous Media by Guar Gum[J]. Journal of Nanoparticle Research, 2009, 11:635-645.
[21] Velimirovic M, Simons Q, Bastiaens L. Guar Gum Coupled Microscale ZVI for in Situ Treatment of CAHs:Continuous-Flow Column Study[J]. Journal of Hazardous Materials, 2014, 265:20-29.
[22] Velimirovic M, Tosco T, Uyttebroek M, et al. Field Assessment of Guar Gum Stabilized Microscale Zerovalent Iron Particles for In-Situ Remediation of 1,1,1-Trichloroethane[J]. Journal of Contaminant Hydrology, 2014, 164:88-99.
[23] Gastone F, Tosco T, Sethi R. Guar Gum Solutions for Improved Delivery of Iron Particles in Porous Media:Part 1:Porous Medium Rheology and Guar Gum-Induced Clogging[J]. Journal of Contaminant Hydrology, 2014, 166:23-33.
[24] Kerzschmar R, Barmettler K, Grolimund D, et al. Experimental Determination of Colloid Deposition Rates and Collision Efficiencies in Natural Porous[J]. Water Resource Research, 1997, 33(5):1129-1137.
[25] Leconanet H F, Bottero J Y, Wiesner M R. Laboratory Assessment of the Mobility of Nanomaterials in Porous Media[J]. Environmental Science and Technology, 2004, 38(19):5164-5169.
[26] Rajagopalan R, Tien C. Comment on Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media[J]. Environmental Science and Technology, 2005,39(14):5494-5495.
[27] Yao K M, Habibian M T, O'Melia C R. Water and Waste Filtration, Concepts and Applications[J]. Environmental Science Teehnology, 1971, 5(11):1105-1112.
[28] 苏燕. 包气带NAPLs污染的表面活性剂泡沫强化修复实验研究[D]. 吉林:吉林大学, 2015. Su Yan. Study on Enhanced Remediation of NAPLs Contaminated Vadose Zone with Surfactant Foams[D]. Jilin:Jilin University, 2015.
[1] 郝立波, 吴超, 赵新运, 赵玉岩, 陆继龙, 魏俏巧. 治岭头金矿围岩蚀变特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1104-1118.
[2] 陈随海, 韩润生, 申屠良义, 吴鹏, 邱文龙, 文德潇. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721.
[3] 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1): 207-213.
[4] 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572.
[5] 于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 199-206.
[6] 姚鑫, 张永双, 熊探宇, 孙岳. 基于干涉雷达的玉树地震断裂运动模式与地震迁移趋势分析[J]. J4, 2012, 42(2): 440-448.
[7] 梁春, 郑西来, 张俊杰, 岳峰. 石油污染多孔介质含水量测定技术[J]. J4, 2011, 41(3): 826-830.
[8] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[9] 路莹, 杜新强, 迟宝明, 杨悦锁, 李胜涛, 王子佳. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. J4, 2011, 41(2): 448-454.
[10] 秦传玉, 赵勇胜, 郑苇, 李雨松, 孙猛. 空气扰动技术对地下水中氯苯污染晕的控制及去除效果[J]. J4, 2010, 40(1): 164-168.
[11] 李小虎,汤中立,初凤友. 金昌市铜镍矿区周围土壤中重金属的迁移特征[J]. J4, 2009, 39(1): 131-0136.
[12] 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318.
[13] 李杨,王清,赵安平,陈慧娥. 长春地区季冻土基本性质对水分迁移的影响[J]. J4, 2008, 38(2): 279-0284.
[14] 梁秀娟,肖长来,盛洪勋,孟晓路,李生海,赵 峰. 吉林市地下水中“三氮”迁移转化规律[J]. J4, 2007, 37(2): 335-340.
[15] 丁爱中,杨双喜,张宏达. 地下水砷污染分析[J]. J4, 2007, 37(2): 319-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[2] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[3] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[4] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[5] 钦丽娟,曹剑峰,平建华,姜纪沂,王 楠,沈媛媛,李 升. 模糊数学在郑州市水资源价值评价中的应用[J]. J4, 2005, 35(04): 487 -0490 .
[6] 黄继国,魏海娟,王立军,王铁军,俞 双,黄国鑫. 三相生物流化床处理啤酒废水[J]. J4, 2005, 35(04): 510 -0514 .
[7] 赵兴敏,花修艺,张菁菁,董德明,李 鱼. 自然水体采集的生物膜上铁、锰氧化物的萃取分离[J]. J4, 2005, 35(04): 505 -0509 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 覃如府,许惠平,叶 娜,欧少佳,卢 焱. 中国岩石圈三维结构数据库地理信息系统设计[J]. J4, 2005, 35(04): 529 -0534 .
[10] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .