吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1121-1128.doi: 10.13278/j.cnki.jjuese.20180045
洪梅, 杨慧萍, 陈韶音
Hong Mei, Yang Huiping, Chen Shaoyin
摘要: 本文采用羧甲基纤维素钠(CMC)、瓜尔胶(Guar gum)对硫化亚铁(FeS)进行了改性,以增强FeS的稳定性和迁移性。通过实验考察了3种FeS(CMC-FeS、GG-FeS、Nano-FeS)的沉降性能及其在粗、中、细砂3种介质中的迁移性能,并根据胶体过滤理论计算了3种FeS在中砂中的沉积速率及在不同介质中的最大迁移距离。结果表明:改性后FeS的稳定性较高,抗沉降性能CMC-FeS > GG-FeS >> Nano-FeS;由穿透曲线看出,3种FeS在粗、中、细砂中的穿透能力(即出流质量浓度ρi与注入质量浓度ρ0的比值)均为CMC-FeS > GG-FeS > Nano-FeS。粗砂和中砂中CMC-FeS的穿透能力明显高于GG-FeS,但细砂中二者的穿透能力相近,说明瓜尔胶的剪切稀化特性更利于GG-FeS在细颗粒介质中的迁移;FeS注入质量浓度的增加会导致更多的FeS沉积到介质中,但聚合物改性可以显著降低沉积速率,沉积速率CMC-FeS < GG-FeS < Nano-FeS;改性后CMC-FeS和GG-FeS在中砂的最大迁移距离分别是Nano-FeS的6.4倍和2.6倍,增加GG-FeS注入质量浓度对其最大迁移距离影响较小。
中图分类号:
[1] Paknikar K M, Nagpal V, Pethkar A V, et al. Degradation of Lindane from Aqueous Solutions Using Iron Sulfide Nanoparticles Stabilized by Biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6(3):370-374. [2] 王夏琳, 李睿华. 利用FeS去除水中硝基苯的试验研究[J]. 环境科学, 2012, 33(12):4346-4351. Wang Xialin, Li Ruihua. Investigation of Nitrobenzene Removal by Iron Sulfide(FeS)[J]. Chinese Journal of Environmental Science, 2012, 33(12):4346-4351. [3] 陈凡. 纳米FeS的制备及其在含铬污水处理中的应用研究[D]. 上海:同济大学, 2004. Chen Fan. Preparation of Iron Sulfide Nanoparticls and Study on Removal of Chromium(VI) from Wastewater[D]. Shanghai:Tongji University, 2004. [4] Wolthers M, Charlet L, Weijden C H V D, et al. Arsenic Mobility in the Ambient Sulfidic Environment:Sorption of Arsenic(V) and Arsenic(Ⅲ) onto Disordered Mackinawite[J]. Geochimica et Cosmochimica Acta, 2005, 69(14):3483-3492. [5] Zhong Xiong, He Feng, Zhao Dongye, et al. Immobilization of Mercury in Sediment Using Stabilized Iron Sulfide Nanoparticles[J]. Water Research, 2009, 43(20):5171-5179. [6] Zhao Xiao, Liu Wen, Cai Zhengqing, et al. An Overview of Preparation and Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation[J]. Water Research, 2016, 100:245-266. [7] Cushing B L, Kolesnichenko V L, Charles J O. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J]. Chemical Reviews, 2004, 104(9):3893-3946. [8] He Feng, Zhao Dongye. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers[J]. Environmental Science and Technology, 2007, 41(17):6216-6221. [9] Mitzel M R, Tufenkji N. Transport of Industrial PVP-Stabilized Silver Nanoparticles in Saturated Quartz Sand Coated with Pseudomonas Aeruginosa PAO1 Biofilm of Variable Age[J]. Environmental Science and Technology, 2014,48(5):2715-2723. [10] Alberto T, Loon C K, Rajandrea S, et al. Reduced Aggregation and Sedimentation of Zero-Valent Iron Nanoparticles in the Presence of Guar Gum[J]. Journal of Colloid and Interface Science, 2008, 3249(1):71-79. [11] 董军, 徐暖, 刘同喆, 等. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1):234-240. Dong Jun, Xu Nuan, Liu Tongzhe, et al. Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil[J]. Journal of Jilin Unviersity(Earth Science Edition), 2018, 48(1):234-240. [12] He Feng, Zhang Man, Qian Tianwei, et al. Transport of Carboxymethyl Cellulose Stabilized Iron Nanoparticles in Porous Media:Column Experiments and Modeling[J]. Journal of Colloid and Interface Science, 2009, 334(1):96-102. [13] He Feng, Zhao Dongye, Liu Juncheng, et al. Stabilization of Fe-Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater[J]. Industrial and Engineering Chemistry Research, 2007, 46(1):29-34. [14] Zhong Xiong, He Feng, Zhao Dongye. Immobilization of Mercury in Sediment Using Stabilized Iron Sulfide Nanoparticles[J]. Water Research, 2009, 43(20):5171-5179. [15] Wang Xianbiao, Liu Jin, Zhao Donglin, et al. Preparation of CMC-Stablized FeS Nanoparticles and Their Enhanced Performance for Cr(VI) Removal[J]. Advanced Materials Research, 2011, 287:96-99. [16] Chen Juan, Chen Ri, Hong Mei. Influence of pH on Hexavalent Chromium Reduction by Fe(Ⅱ) and Sulfide Compounds[J]. Water Sci Technol, 2015,72(1):22-28. [17] Gong Yanyan, Liu Yuanyuan, Zhong Xiong, et.al. Immobilization of Mercury in Field Soil and Sediment Using Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles[J]. Nanotechnology, 2012, 23(29):294007-294019. [18] 刘伟. 瓜尔豆胶稳定纳米铁的制备及其去除水体中六价铬的研究[D]. 天津:南开大学, 2013. Liu Wei. Synthesis of Guar Gum Stabilized Nanoscale Zero-Valent Iron and Application for Cr(Ⅵ)Removal in Water[D]. Tianjin:Nankai University, 2013. [19] 乐兰. 绿色聚合物改性纳米零价铁及其对六价铬去除[D]. 昆明:昆明理工大学, 2016. Le Lan.Green Polymer Modified Nano Zero Valent Iron for Removal of Chromium (Ⅵ)[D]. Kunming:Kunming University of Science and Technology, 2016. [20] Alberto T, Rajandrea S. Enhanced Transport of Zerovalent Iron Nanoparticles in Saturated Porous Media by Guar Gum[J]. Journal of Nanoparticle Research, 2009, 11:635-645. [21] Velimirovic M, Simons Q, Bastiaens L. Guar Gum Coupled Microscale ZVI for in Situ Treatment of CAHs:Continuous-Flow Column Study[J]. Journal of Hazardous Materials, 2014, 265:20-29. [22] Velimirovic M, Tosco T, Uyttebroek M, et al. Field Assessment of Guar Gum Stabilized Microscale Zerovalent Iron Particles for In-Situ Remediation of 1,1,1-Trichloroethane[J]. Journal of Contaminant Hydrology, 2014, 164:88-99. [23] Gastone F, Tosco T, Sethi R. Guar Gum Solutions for Improved Delivery of Iron Particles in Porous Media:Part 1:Porous Medium Rheology and Guar Gum-Induced Clogging[J]. Journal of Contaminant Hydrology, 2014, 166:23-33. [24] Kerzschmar R, Barmettler K, Grolimund D, et al. Experimental Determination of Colloid Deposition Rates and Collision Efficiencies in Natural Porous[J]. Water Resource Research, 1997, 33(5):1129-1137. [25] Leconanet H F, Bottero J Y, Wiesner M R. Laboratory Assessment of the Mobility of Nanomaterials in Porous Media[J]. Environmental Science and Technology, 2004, 38(19):5164-5169. [26] Rajagopalan R, Tien C. Comment on Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media[J]. Environmental Science and Technology, 2005,39(14):5494-5495. [27] Yao K M, Habibian M T, O'Melia C R. Water and Waste Filtration, Concepts and Applications[J]. Environmental Science Teehnology, 1971, 5(11):1105-1112. [28] 苏燕. 包气带NAPLs污染的表面活性剂泡沫强化修复实验研究[D]. 吉林:吉林大学, 2015. Su Yan. Study on Enhanced Remediation of NAPLs Contaminated Vadose Zone with Surfactant Foams[D]. Jilin:Jilin University, 2015. |
[1] | 郝立波, 吴超, 赵新运, 赵玉岩, 陆继龙, 魏俏巧. 治岭头金矿围岩蚀变特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1104-1118. |
[2] | 陈随海, 韩润生, 申屠良义, 吴鹏, 邱文龙, 文德潇. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721. |
[3] | 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1): 207-213. |
[4] | 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572. |
[5] | 于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 199-206. |
[6] | 姚鑫, 张永双, 熊探宇, 孙岳. 基于干涉雷达的玉树地震断裂运动模式与地震迁移趋势分析[J]. J4, 2012, 42(2): 440-448. |
[7] | 梁春, 郑西来, 张俊杰, 岳峰. 石油污染多孔介质含水量测定技术[J]. J4, 2011, 41(3): 826-830. |
[8] | 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846. |
[9] | 路莹, 杜新强, 迟宝明, 杨悦锁, 李胜涛, 王子佳. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. J4, 2011, 41(2): 448-454. |
[10] | 秦传玉, 赵勇胜, 郑苇, 李雨松, 孙猛. 空气扰动技术对地下水中氯苯污染晕的控制及去除效果[J]. J4, 2010, 40(1): 164-168. |
[11] | 李小虎,汤中立,初凤友. 金昌市铜镍矿区周围土壤中重金属的迁移特征[J]. J4, 2009, 39(1): 131-0136. |
[12] | 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318. |
[13] | 李杨,王清,赵安平,陈慧娥. 长春地区季冻土基本性质对水分迁移的影响[J]. J4, 2008, 38(2): 279-0284. |
[14] | 梁秀娟,肖长来,盛洪勋,孟晓路,李生海,赵 峰. 吉林市地下水中“三氮”迁移转化规律[J]. J4, 2007, 37(2): 335-340. |
[15] | 丁爱中,杨双喜,张宏达. 地下水砷污染分析[J]. J4, 2007, 37(2): 319-325. |
|