吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 1-21.doi: 10.13229/j.cnki.jdxbgxb.20230834

• 综述 •    

导电沥青混凝土研究进展

王壮1(),冯振刚1(),姚冬冬2,崔奇1,沈若廷2,李新军1   

  1. 1.长安大学 公路学院,西安 710064
    2.吉林省交通科学研究所,长春 130012
  • 收稿日期:2023-06-29 出版日期:2024-01-30 发布日期:2024-03-28
  • 通讯作者: 冯振刚 E-mail:zhuangwang@chd.edu.cn;zgfeng@chd.edu.cn
  • 作者简介:王壮(1994-),男,博士研究生. 研究方向:智能路面自感知材料设计与性能.E-mail: zhuangwang@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(51508032);吉林省交通运输创新发展支撑项目(2020-1-13);中央高校基本科研业务费专项资金项目(300102212913)

Research progress of conductive asphalt concrete

Zhuang WANG1(),Zhen-gang FENG1(),Dong-dong YAO2,Qi CUI1,Ruo-ting SHEN2,Xin-jun LI1   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.Jilin Provincial Transport Scientific Research Institute,Changchun 130012,China
  • Received:2023-06-29 Online:2024-01-30 Published:2024-03-28
  • Contact: Zhen-gang FENG E-mail:zhuangwang@chd.edu.cn;zgfeng@chd.edu.cn

摘要:

为厘清国内外导电沥青混凝土技术的研究进展,系统梳理了导电材料的分类及其在导电沥青混凝土中的应用现状,分析了不同类型导电沥青混凝土的导电性能和路用性能,论述了导电沥青混凝土的作用机理(导电机理、压阻机理和电热机理),探讨了导电沥青混凝土自诊断、自感知、感应加热自愈合、融雪化冰等功能特性,介绍了其在实际工程中的应用现状,并对导电沥青混凝土的未来发展方向进行了展望。

关键词: 道路工程, 导电沥青混凝土, 导电材料, 导电性能, 机理, 功能特性

Abstract:

To clarify the research progress of conductive asphalt concrete technology, the classification of conductive materials and their applications in conductive asphalt concrete were reviewed systematically. The conductive and road performance of various conductive asphalt concretes were summarized. The mechanism of conductive asphalt concrete (conductive mechanism, piezoresistive mechanism and electrothermal mechanism) was discussed. The functional performances of conductive asphalt concrete such as self-monitoring, self-sensing, self-healing by induction heating, and deicing were explored. The functional application of conductive asphalt concrete in actual engineering was introduced, and the future development directions were prospected.

Key words: road engineering, conductive asphalt concrete, conductive materials, electrical conductivity, mechanism, functional performances

中图分类号: 

  • U416.217

表1

导电沥青混凝土导电材料的分类"

总体分类详细分类导电材料
根据化学成分碳素材料石墨、炭黑、碳纤维、石墨烯、碳纳米管等
金属导电材料钢纤维、铝纤维和钢渣等
根据颗粒尺寸粉末类石墨、炭黑、石墨烯、碳纳米管等
纤维类碳纤维、钢纤维、碳纳米纤维和铝纤维等
颗粒类钢渣或其他导电骨料

图1

导电沥青混凝土导电材料的研究进展"

图2

石墨含量对CAC电阻率的影响"

图3

片状石墨SEM图"

表2

碳纤维导电沥青混凝土的拌合工艺"

拌合工艺参考文献
集料+沥青+碳纤+矿粉击实成型文献[33
集料+沥青+碳纤+矿粉击实成型文献[35
集料+碳纤+沥青+矿粉击实成型文献[39
集料+碳纤(手动拌合均匀)+沥青+矿粉击实成型文献[41

图4

金属纤维样品"

图5

单相、双相和三相导电材料的电阻率"

表3

不同多相复合导电沥青混凝土类型及其电阻率结果"

参考文献导电材料电阻率/(Ω·m)
石墨(vol%a碳纤维(wt‰b钢渣(wt%b石墨烯(wt%c
文献[761001.1×109
1522.0×103
152100256.4
18383.3
18310010
文献[3528.6
21.52.37
文献[39317.96
30.54.63

图6

电阻测试示意图"

图7

体积电阻率与导电材料掺量的关系"

图8

导电沥青混凝土的导电模型示意图"

图9

导电沥青混凝土的SEM图"

图10

含石墨颗粒复合材料中的电子传导机制"

图11

含导电纤维复合材料中的电子传导机制"

图12

导电沥青混凝土压阻机理"

图13

导电沥青混凝土压阻原理图"

图14

智能路面结构示意图"

图15

不同应力振幅下混合料的损伤演化过程"

图16

疲劳过程中电阻率的变化和纵向位移曲线"

图17

自感知沥青路面工作原理"

图18

导电沥青混凝土压阻响应"

图19

电磁感应加热原理示意图"

图20

导电沥青混凝土愈合过程示意图"

1 Sun Y, Wu S, Liu Q, et al. Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating[J]. Applied Thermal Engineering, 2018, 129: 871-883.
2 谭忆秋, 张驰, 徐慧宁, 等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.
Tan Yi-qiu, Zhang Chi, Xu Hui-ning, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17.
3 Arabzadeh A, Notani M A, Zadeh A K, et al. Electrically conductive asphalt concrete: an alternative for automating the winter maintenance operations of transportation infrastructure[J]. Composites Part B: Engineering, 2019, 173: No. 106985.
4 Liu X, Wu S. Study on the graphite and carbon fiber modified asphalt concrete[J]. Construction and Building Materials, 2011, 25(4): 1807-1811.
5 Liu L, Zhang X, Xu L, et al. Investigation on the piezoresistive response of carbon fiber-graphite modified asphalt mixtures[J]. Construction and Building Materials, 2021, 301: No. 124140.
6 Gulisano F, Buasiri T, Apaza F R A, et al. Piezoresistive behavior of electric arc furnace slag and graphene nanoplatelets asphalt mixtures for self-sensing pavements[J]. Automation in Construction, 2022, 142: No. 104534.
7 何亮, 赵龙, 凌天清, 等. 密实型沥青混合料裂缝感应热自愈合性能研究[J]. 中国公路学报, 2017, 30(1): 17-24.
He Liang, Zhao Long, Ling Tian-qing, et al. Research on induction heating activated self-healing of cracks in dense graded asphalt mixture[J]. China Journal of Highway and Transport, 2017, 30(1): 17-24.
8 Karimi M M, Darabi M K, Jahanbakhsh H, et al. Effect of steel wool fibers on mechanical and induction heating response of conductive asphalt concrete[J]. International Journal of Pavement Engineering, 2020, 21(14): 1755-1768.
9 Dong Z, Ullah S, Zhou T, et al. Self-monitoring of damage evolution in asphalt concrete based on electrical resistance change method[J]. Journal of Testing and Evaluation, 2022, 50(5): 2698-2717.
10 Gulisano F, Abedi M A, Jurado-Piña R, et al. Stress and damage-sensing capabilities of asphalt mixtures incorporating graphene nanoplatelets[J]. Sensors and Actuators A: Physical, 2023, 359: No. 114494.
11 黄如宝, 牛衍亮, 赵鸿铎, 等. 道路压电能量收集技术途径与研究展望[J]. 中国公路学报, 2012, 25(6): 1-8.
Huang Ru-bao, Niu Yan-liang, Zhao Hong-duo, et al. Technical approach and research prospect of piezoelectric energy harvest from highway[J]. China Journal of Highway and Transport, 2012, 25(6): 1-8.
12 Xiang H, Wang J, Shi Z, et al. Corrigendum: theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements[J]. Smart Materials and Structures, 2014, 23(11): No. 119502.
13 Wang C, Wang H, Li Y. Study on technology of power pavement based on integration of piezoelectric material and pavement material[J]. Journal of Highway and Transportation Research and Development, 2016, 33(11): 14-19.
14 Chen F, Balieu R. A state-of-the-art review of intrinsic and enhanced electrical properties of asphalt materials: Theories, analyses and applications[J]. Materials & Design, 2020, 195: No. 109067.
15 Pan P, Wu S, Xiao F, et al. Conductive asphalt concrete: a review on structure design, performance, and practical applications[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(7): 755-769.
16 Pan P, Wu S, Hu X, et al. Effect of material composition and environmental condition on thermal characteristics of conductive asphalt concrete[J]. Materials, 2017, 10(3): No. 218.
17 García Á, Norambuena-Contreras J, Partl M N. Experimental evaluation of dense asphalt concrete properties for induction heating purposes[J]. Construction and Building Materials, 2013, 46: 48-54.
18 刘小明, 吴少鹏, 杨小礼. 导电沥青混凝土的机敏特性[J]. 中南大学学报:自然科学版, 2009, 40(5): 1465-1470.
Liu Xiao-ming, Wu Shao-peng, Yang Xiao-li. Smart characteristics of conductive asphalt concrete[J]. Journal of Central South University (Natural Science), 2009, 40(5): 1465-1470.
19 刘志胜, 武胜兵, 刘鹏飞, 等. 导电沥青混凝土及其功能特性研究进展[J]. 材料导报, 2017, 31(): 374-378, 387.
Liu Zhi-sheng, Wu Sheng-bing, Liu Peng-fei, et al. Review on functional features of conductive asphalt concrete[J]. Materials Reports, 2017, 31(Sup.1): 374-378, 387.
20 Minsk L D. Eelectrically conductive asphalt for control of snow and ice accumulation[J]. Highway Research Record, 1968, 227: 57-63.
21 Zaleski P L D D J, Flood W H. Electrically conductive paving mixture and paving system[P]. US Patent,No.5707171.
22 Wu S, Mo L, Shui Z, et al. An improvement in electrical properties of asphalt concrete[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2002, 17(4): 69-72.
23 磨炼同. 导电沥青混凝土的制备与研究[D]. 武汉: 武汉理工大学材料科学与工程学院, 2004.
Mo Lian-tong. Preparation and research of electrically conductive asphalt concrete[D]. Wuhan: School of Materials Science and Engineering, Wuhan University of Technology, 2004.
24 Wu S, Mo L, Shui Z, et al. Investigation of the conductivity of asphalt concrete containing conductive fillers[J]. Carbon, 2005, 43(7): 1358-1363.
25 Liu X, Wu S, Ye Q, et al. Properties evaluation of asphalt-based composites with graphite and mine powders[J]. Construction and Building Materials, 2008, 22(3): 121-126.
26 Liu X, Wu S. Research on the conductive asphalt concrete's piezoresistivity effect and its mechanism[J]. Construction and Building Materials, 2009, 23(8): 2752-2756.
27 Park P. Characteristics and applications of high-performance fiber reinforced asphalt concrete[D]. Michigan: College of Engineering, University of Michigan, 2012.
28 Park P, Rew Y, Baranikumar A. Controlling conductivity of asphalt concrete with graphite[R]. Texas: Texas A&M Transportation Institute, 2014.
29 吴少鹏, 磨炼同, 水中和. 石墨改性沥青混凝土的导电机制[J]. 自然科学进展, 2005, 14(4): 64-70.
Wu Shao-peng, Mo Lian-tong, Shui Zhong-he. The conductive mechanism of graphite modified asphalt concrete[J]. Progress in Natural Science, 2005, 14(4): 64-70.
30 Fitzgerald R L. Novel applications of caron fiber hot mix asphalt reinforcement and carbon-carbon pre-forms[D]. Michigan: College of Engineering, Michigan Technological University, 2000.
31 Moghadas N F, Vadood M, Baeetabar S. Investigating the mechanical properties of carbon fibre-reinforced asphalt concrete[J]. Road Materials and Pavement Design, 2014, 15(2): 465-475.
32 Abtahi S M, Sheikhzadeh M, Hejazi S M. Fiber-reinforced asphalt-concrete-a review[J]. Construction and Building Materials, 2010, 24(6): 871-877.
33 冯新军, 查旭东, 程景. PAN基碳纤维导电沥青混凝土的制备及性能[J]. 中国公路学报, 2012, 25(2): 27-32.
Feng Xin-jun, Zha Xu-dong, Cheng Jing. Preparation and performance of PAN-based carbon fiber conductive asphalt concrete[J]. China Journal of Highway and Transport, 2012, 25(2): 27-32.
34 宋鹏. 石墨烯导电沥青混凝土制备及性能研究[D]. 重庆: 重庆交通大学交通运输学院, 2019.
Song Peng. Study on preparation and properties of graphene conductive asphalt concrete[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2019.
35 谭忆秋, 刘凯, 王英园. 碳纤维/石墨烯导电沥青混凝土的非线性伏安特性[J]. 建筑材料学报, 2019, 22(2): 278-283.
Tan Yi-qiu, Liu Kai, Wang Ying-yuan. Nonlinear voltammetric characteristics of carbon fiber/graphene conductive asphalt concrete[J]. Journal of Building Materials, 2019, 22(2): 278-283.
36 查旭东, 陈勇强, 程景. 短切PAN基碳纤维导电沥青混合料性能试验研究[J]. 功能材料, 2012, 43(7): 872-876.
Zha Xu-dong, Chen Yong-qiang, Cheng Jing. Experimental research on performances for conductive asphalt mixture with chopped PAN-based carbon fiber[J]. Journal of Functional Materials, 2012, 43(7): 872-876.
37 程景. PAN基碳纤维导电沥青混凝土研究[D]. 长沙: 长沙理工大学交通运输工程学院, 2010.
Cheng Jing. Research on conductive asphalt concrete with PAN-based carbon fiber[D]. Changsha: School of Traffic and Transportation Engineering, Changsha University of Science & Technology, 2010.
38 胡天文, 霍海峰, 张佩浩, 等. 碳纤维沥青混凝土导电特性研究[J]. 新型建筑材料, 2017, 44(10): 58-61, 80.
Hu Tian-wen, Huo Hai-feng, Zhang Pei-hao, et al. Conductive characteristic research of carbon fiber asphalt concrete[J]. New Building Materials, 2017, 44(10): 58-61, 80.
39 黄维蓉, 杨玉柱, 宋鹏, 等. 石墨烯-碳纤维导电沥青混凝土电热性能研究[J]. 化工新型材料, 2021, 49(8): 269-273.
Huang Wei-rong, Yang Yu-zhu, Song Peng, et al. Study on electrothermal property of rGO-CF conductive asphalt concrete[J]. New Chemical Materials, 2021, 49(8): 269-273.
40 Wang Y, Tan Y, Liu K, et al. Preparation and electrical properties of conductive asphalt concretes containing graphene and carbon fibers[J]. Construction and Building Materials, 2022, 318: No. 125875.
41 杨振华. 石墨碳纤维导电沥青混凝土的制备及性能研究[D]. 长沙: 长沙理工大学交通运输工程学院, 2015.
Yang Zhen-hua. Research on preparation and performance of conductive graphite carbon fiber asphalt concrete[D]. Changsha: School of Traffic and Transportation Engineering, Changsha University of Science & Technology, 2015.
42 Ullah S, Yang C, Cao L, et al. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Construction and Building Materials, 2021, 303: No. 124446.
43 Huang B, Chen X, Shu X. Effects of electrically conductive additives on laboratory-measured properties of asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2009, 21(10): 612-617.
44 Messaoud M, Glaoui B, Abdelkhalek O. The effect of adding steel fibers and graphite on mechanical and electrical behaviors of asphalt concrete[J]. Civil Engineering Journal, 2022, 8(2): 348-361.
45 García Á, Schlangen E, Van De Ven M. Two ways of closing cracks on asphalt concrete pavements: microcapsules and induction heating[J]. Key Engineering Materials, 2010, 417: 573-576.
46 García Á, Schlangen E, Van De Ven M, et al. Induction heating of mastic containing conductive fibers and fillers[J]. Materials and Structures, 2011, 44: 499-508.
47 Dai Q, Wang Z, Hasan M R M. Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests[J]. Construction and Building Materials, 2013, 49: 729-737.
48 Liu Q, Schlangen E, García Á, et al. Induction heating of electrically conductive porous asphalt concrete[J]. Construction and Building Materials, 2010, 24(7): 1207-1213.
49 Liu Q, Schlangen E, Vdv M, et al. Mechanical properties of sustainable, self-healing porous asphalt concrete[J]. Journal of Wuhan University of Technology, 2010, 17: 58-65.
50 Liu Q, Schlangen E, Van De Ven M, et al. Healing of porous asphalt concrete via induction heating[J]. Road Materials and Pavement Design, 2010, 11(Sup.1): 527-542.
51 Liu Q, García Á, Schlangen E, et al. Induction healing of asphalt mastic and porous asphalt concrete[J]. Construction and Building Materials, 2011, 25(9): 3746-3752.
52 Liu Q, Schlangen E, Van De Ven M, et al. Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test[J]. Construction and Building Materials, 2012, 29: 403-409.
53 李波, 李艳博, 梁秀娟. 添加钢棉的多孔沥青混凝土感应愈合性能研究[J]. 中外公路, 2015, 35(4): 239-243.
Li Bo, Li Yan-bo, Liang Xiu-juan. Study on induction healing performance of porous asphalt concrete with steel wool.[J]. Journal of China & Foreign Highway, 2015, 35(4): 239-243.
54 Hosseinian S M, Najafi Moghaddam Gilani V, Mehraban Joobani P, et al. Investigation of moisture sensitivity and conductivity properties of inductive asphalt mixtures containing steel wool fiber[J]. Advances in Civil Engineering, 2020:No.8890814.
55 Liu Z, Wang Y, Meng Y, et al. Comprehensive performance evaluation of steel fiber-reinforced asphalt mixture for induction heating[J]. International Journal of Pavement Engineering, 2022, 23(11): 3838-3849.
56 García Á, Norambuena-Contreras J, Partl M N. A parametric study on the influence of steel wool fibers in dense asphalt concrete[J]. Materials and Structures, 2014, 47: 1559-1571.
57 Norambuena-Contreras J, Serpell R, Vidal G V, et al. Effect of fibres addition on the physical and mechanical properties of asphalt mixtures with crack-healing purposes by microwave radiation[J]. Construction and Building Materials, 2016, 127: 369-382.
58 Norambuena-Contreras J, García Á. Self-healing of asphalt mixture by microwave and induction heating[J]. Materials & Design, 2016, 106: 404-414.
59 Pamulapati Y, Elseifi M A, Cooper Iii S B, et al. Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers[J]. Construction and Building Materials, 2017, 146: 66-75.
60 Liu J, Xu J, Liu Q, et al. Steel slag for roadway construction: a review of material characteristics and application mechanisms[J]. Journal of Materials in Civil Engineering, 2022, 34(6): No. 03122001.
61 Ahmedzade P, Sengoz B. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete[J]. Journal of Hazardous Materials, 2009, 165(1/3): 300-305.
62 Jiao W, Sha A, Liu Z, et al. Study on thermal properties of steel slag asphalt concrete for snow-melting pavement[J]. Journal of Cleaner Production, 2020, 277: No. 123574.
63 Huang L, Lin D, Luo H, et al. Effect of field compaction mode on asphalt mixture concrete with basic oxygen furnace slag[J]. Construction and Building Materials, 2012, 34: 16-27.
64 Qazizadeh M J, Farhad H, Kavussi A, et al. Evaluating the fatigue behavior of asphalt mixtures containing electric arc furnace and basic oxygen furnace slags using surface free energy estimation[J]. Journal of Cleaner Production, 2018, 188: 355-361.
65 Yi H, Xu G, Cheng H, et al. An overview of utilization of steel slag[J]. Procedia Environmental Sciences, 2012, 16: 791-801.
66 Wu S, Xue Y, Ye Q, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J]. Building and Environment, 2007, 42(7): 2580-2585.
67 Chen F, Chen M, Wu S, et al. Research on pavement performance of steel slag conductive asphalt concrete for deicing and snow melting[J]. Key Engineering Materials, 2012, 509: 168-174.
68 Xie J, Wu S, Lin J, et al. Recycling of basic oxygen furnace slag in asphalt mixture: material characterization & moisture damage investigation[J]. Construction and Building Materials, 2012, 36: 467-474.
69 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33.
He Liang, Zhan Cheng-yang, Song-tao Lyu, et al. Application status of steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 15-33.
70 Vo H V, Park D W, Seo W J, et al. Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: thermal conductivity improvement[J]. Journal of Materials in Civil Engineering, 2017, 29(1): No. 04016176.
71 García Á, Schlangen E, Van De Ven M, et al. Electrical conductivity of asphalt mortar containing conductive fibers and fillers[J]. Construction and Building Materials, 2009, 23(10): 3175-3181.
72 Wang H, Yang J, Liao H, et al. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers[J]. Construction and Building Materials, 2016, 122: 184-190.
73 王向阳, 高宇星. 碳纤维石墨导电沥青混凝土的制备及导电性能研究[J]. 公路, 2012, 56(1): 139-142.
Wang Xiang-yang, Gao Yu-xing. Research on preparation and conductive performance of conductive carbon fiber graphite asphalt concrete[J]. Highway, 2012, 56(1): 139-142.
74 Wu S, Pan P, Chen M, et al. Analysis of characteristics of electrically conductive asphalt concrete prepared by multiplex conductive materials[J]. Journal of Materials in Civil Engineering, 2013, 25(7): 871-879.
75 Yang H, Ouyang J, Cao P, et al. Effect of steel wool and gaphite on the electrical conductivity and pavement properties of asphalt mixture[J]. Journal of Materials in Civil Engineering, 2022, 34(3): No. 04021466.
76 Gürer C, Fidan U, Korkmaz B E. Investigation of using conductive asphalt concrete with carbon fiber additives in intelligent anti-icing systems[J]. International Journal of Pavement Engineering, 2023, 24(1): No. 2077941.
77 张园. 多相复合导电沥青混凝土的制备与性能研究[D]. 武汉: 武汉理工大学材料科学与工程学院, 2010.
Zhang Yuan. Preparation and properties investigation of multiplex electrically conductive asphalt concrete[D]. Wuhan: School of Materials Science and Engineering, Wuhan University of Technology, 2010.
78 Callomamani L A P, Bala N, Hashemian L. Comparative analysis of the impact of synthetic fibers on cracking resistance of asphalt mixes[J]. International Journal of Pavement Research and Technology, 2022, 16(4): 992-1008.
79 Liu X, Liu W, Wu S, et al. Effect of carbon fillers on electrical and road properties of conductive asphalt materials[J]. Construction and Building Materials, 2014, 68: 301-306.
80 Pan P, Wu S, Hu X, et al. Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete[J]. Construction and Building Materials, 2017, 140: 239-247.
81 Gao H, Zhang L, Zhang D, et al. Mechanical properties of fiber-reinforced asphalt concrete: finite element simulation and experimental study[J]. e-Polymers, 2021, 21(1): 533-548.
82 Kim S, Choi S, Oh E, et al. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials[J]. Scientific Reports, 2016, 6(1): 1-10.
83 Kirkpatrick S. Percolation and conduction[J]. Reviews of Modern Physics, 1973, 45(4): 574-588.
84 Zhang C, Zhu J, Ouyang M, et al. Conductive network formation and electrical properties of poly (vinylidene fluoride)/multiwalled carbon nanotube composites: Percolation and dynamic percolation[J]. Journal of Applied Polymer Science, 2009, 114(3): 1405-1411.
85 石东海. 聚合物基复合材料 PTC 性能研究[D]. 北京: 北京化工大学材料科学与工程学院, 2008.
Shi Dong-hai. Study on PTC effect in polymer-based composites[D]. Beijing: School of Materials Science and Engineering, Beijing University of Chemical Technology, 2008.
86 宋固全, 陈忠良, 陈煜国. 有效介质理论在复合型导电高分子材料研究中的应用[J]. 化工新型材料, 2013, 41(11): 152-154.
Song Gu-quan, Chen Zhong-liang, Chen Yu-guo. Application of the effective media theory in the research of composite polymer materials[J]. New Chemical Materials, 2013, 41(11): 152-154.
87 汤浩, 陈欣方, 罗云霞. 复合型导电高分子材料导电机理研究及电阻率计算[J]. 高分子材料科学与工程, 1996, 12(2): 1-7.
Tang Hao, Chen Xin-fang, Luo Yun-xia. Conductive mechanism research and resistivity calculation of composite conductive polymer materials[J]. Polymer Materials Science & Engineering, 1996, 12(2): 1-7.
88 Sun C, Qin L, Wu S, et al. The influence of electrode on resistivity of conductive asphalt concrete for self-monitoring[J]. Key Engineering Materials, 2012, 509: 203-208.
89 Ullah S, Wan S, Yang C, et al. Self‐stress and deformation sensing of electrically conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Structural Control and Health Monitoring, 2022, 29: 1-17.
90 Vo H V, Park D-W. Application of conductive materials to asphalt pavement[J]. Advances in Materials Science and Engineering, 2017(1): 1-7.
91 Tang N, Pan W, Chen Y, et al. Numerical and experimental investigation of piezoresistance of asphalt concrete containing graphite[J]. Materials Science Forum, 2016, 852: 1383-1390.
92 Rizvi H R, Khattak M J, Madani M, et al. Piezoresistive response of conductive hot mix asphalt mixtures modified with carbon nanofibers[J]. Construction and Building Materials, 2016, 106: 618-631.
93 Chen Z, Liu R, Hao P, et al. Developments of conductive materials and characteristics on asphalt concrete: a review[J]. Journal of Testing and Evaluation, 2019, 48(3): 2144-2161.
94 Dong S, Zhang W, D'alessandro A, et al. Developing highly conductive asphalt concrete by incorporating stainless steel fibers/wires for smart pavement[J]. Journal of Materials Science, 2023, 58: 11062-11084.
95 Wang H, Yang J, Liao H. Advances in self-monitoring asphalt concrete[C]∥The 15th COTA International Conference of Transportation Professionals, Beijing, China, 2015: 810-822.
96 Wu S, Liu X, Ye Q, et al. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: 512-516.
97 Liu X, Nie Z, Wu S, et al. Self-monitoring application of conductive asphalt concrete under indirect tensile deformation[J]. Case Studies in Construction Materials, 2015, 3: 70-77.
98 Zhu F, Cheung L, Dong Z. Research on the relationship between the loading and the conductivity of smart asphalt concrete[C]∥Performance Modeling and Evaluation of Pavement Systems and Materials: Selected Papers from the 2009 GeoHunan International Conference, Changsha, China, 2009, 354: 165-170.
99 Wu S, Mo L, Shui Z. Piezoresistivity of graphite modified asphalt-based composites[J]. Key Engineering Materials, 2003, 249: 391-396.
100 Liu X, Wu S, Li N, et al. Self-monitoring application of asphalt concrete containing graphite and carbon fibers[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(2): 268-271.
101 Karimi M M, Amani S, Jahanbakhsh H, et al. Induced heating-healing of conductive asphalt concrete as a sustainable repairing technique: a review[J]. Cleaner Engineering and Technology, 2021, 4: No. 100188.
102 Sun D, Sun G, Zhu X, et al. A comprehensive review on self-healing of asphalt materials: mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93.
103 Liang B, Lan F, Shi K, et al. Review on the self-healing of asphalt materials: mechanism, affecting factors, assessments and improvements[J]. Construction and Building Materials, 2021, 266: No. 120453.
104 García Á, Bueno M, Norambuena-Contreras J, et al. Induction healing of dense asphalt concrete[J]. Construction and Building Materials, 2013, 49: 1-7.
105 Menozzi A, García Á, Partl M N, et al. Induction healing of fatigue damage in asphalt test samples[J]. Construction and Building Materials, 2015, 74: 162-168.
106 Jahanbakhsh H, Karimi M M, Jahangiri B, et al. Induction heating and healing of carbon black modified asphalt concrete under microwave radiation[J]. Construction and Building Materials, 2018, 174: 656-666.
107 Liu Q, Schlangen E, Van De Ven M F C. Induction Healing of Porous Asphalt[J]. Transportation Research Record, 2012, 2305: 95-101.
108 Chen M, Wu S, Wang H, et al. Study of ice and snow melting process on conductive asphalt solar collector[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3241-3250.
109 李科宏, 熊锐, 蒋汶玉, 等. 基于感应加热的钢丝绒纤维沥青混合料除冰性能评价[J]. 科学技术与工程, 2019, 19(32): 313-321.
Li Ke-hong, Xiong Rui, Jiang Wen-yu, et al. Evaluation of deicing performance of steel wool fiber asphalt mixture based on induction heating[J]. Science Technology and Engineering, 2019, 19(32): 313-321.
110 纪括, 熊锐, 李科宏, 等. 感应加热沥青混合料融雪化冰性能研究进展[J]. 应用化工, 2021, 50(2): 450-454, 475.
Ji Kuo, Xiong Rui, Li Ke-hong, et al. Research progress on the performance of induction heating asphalt mixture for melting snow and deicing[J]. Applied Chemical Industry, 2021, 50(2): 450-454, 475.
111 Bai B C, Park D-W, Vo H V, et al. Thermal properties of asphalt mixtures modified with conductive fillers[J]. Journal of Nanomaterials, 2015, 16(1): 255-260.
112 吕林女, 敖灶鑫, 丁庆军, 等. 钢渣导电沥青混凝土的制备与性能研究[J]. 公路, 2009, 53(2): 132-136.
Lin-nv Lyu, Ao Zao-xin, Ding Qing-jun, et al. Preparation of conductive asphalt concrete added with steel slag and studies on its properties[J]. Highway, 2009, 53(2): 132-136.
113 何永佳, 敖灶鑫, 吕林女, 等. 融雪化冰用钢渣导电沥青混凝土的电阻稳定性[J]. 北京工业大学学报, 2011, 37(1): 80-84.
He Yong-jia, Ao Zao-xin, Lin-nv Lyu, et al. Electrical resistance stability on conductive asphalt concrete using steel slag as aggregate for deicing and snow-melting[J]. Journal of Beijing University of Technology, 2011, 37(1): 80-84.
114 Jiao W, Sha A, Liu Z, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements[J]. Journal of Cleaner Production, 2020, 261: No. 121197.
115 Stratfull R F. Experimental cathodic protection of a bridge deck[J]. Transportation Research Record, 1974, 500: 1-15.
116 Fromm H J. Electrically conductive asphalt mixes for the cathodic protection of concrete bridge decks[C]∥Association of Asphalt Paving Technologists. Minneapolis, USA, 1976: 382-399.
117 Liu X, Yu G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil[J]. Chemosphere, 2006, 63(2): 228-235.
118 Huang B, Cao J, Chen X, et al. Laboratory investigation into electrically conductive HMA mixtures[J]. Journal of the Association of Asphalt Paving Technologists, 2006, 75: 1235-1253.
119 Wu S, Zhang Y, Chen M. Research on mechanical characteristics of conductive asphalt concrete by indirect tensile test[C]∥Fourth International Conference on Experimental Mechanics, Singapore, 2010: 1720-1727.
120 姚占勇, 韩杰, 商庆森, 等. 碳纤维石墨导电沥青砂浆压敏性能研究[J]. 山东大学学报: 工学版, 2013, 43(1): 80-85.
Yao Zhan-yong, Han Jie, Shang Qing-sen, et al. Research on pressure sensitivity of the conductive asphalt mortar with carbon fiber and graphite powders[J]. Journal of Shandong University (Engineering Science), 2013, 43(1): 80-85.
121 Rew Y, Baranikumar A, Tamashausky A V, et al. Electrical and mechanical properties of asphaltic composites containing carbon based fillers[J]. Construction and Building Materials, 2017, 135: 394-404.
122 Karimi M M, Jahanbakhsh H, Jahangiri B, et al. Induced heating-healing characterization of activated carbon modified asphalt concrete under microwave radiation[J]. Construction and Building Materials, 2018, 178: 254-271.
123 Moreno-Navarro F, Sol-Sanchez M, Gamiz F, et al. Mechanical and thermal properties of graphene modified asphalt binders[J]. Construction and Building Materials, 2018, 180: 265-274.
124 Nazki M A, ChopraT, Chandrappa A K. Rheological properties and thermal conductivity of bitumen binders modified with graphene[J]. Construction and Building Materials, 2020, 238: No. 117693.
125 Xin X, Qiu Z, Luan X, et al. Novel conductive polymer composites for asphalt pavement structure in situ strain monitoring: influence of CB/CNT and GNP/CNT nano/micro hybrid fillers on strain sensing behavior[J]. IEEE Sensors Journal, 2022, 22(5): 3945-3956.
[1] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[2] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[3] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[4] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[5] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[6] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[7] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[8] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[9] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[10] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[11] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[12] 李博,李欣,芮红,梁媛. 基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测[J]. 吉林大学学报(工学版), 2023, 53(6): 1853-1860.
[13] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[14] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
[15] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!