吉林大学学报(工学版)

• • 上一篇    下一篇

带有死区非线性输入的挠性
航天器姿态机动智能控制

朱良宽,马广富,胡庆雷   

  1. 哈尔滨工业大学 航天学院 控制科学与工程系,哈尔滨 150001
  • 收稿日期:2007-09-16 修回日期:1900-01-01 出版日期:2008-03-01 发布日期:2008-03-01
  • 通讯作者: 马广富

Attitude maneuvering intelligent control of flexible spacecraft
with dead zone input nonlinearity

Zhu Liang-kuan,Ma Guang-fu,Hu Qing-lei   

  1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2007-09-16 Revised:1900-01-01 Online:2008-03-01 Published:2008-03-01
  • Contact: Ma Guang-fu

摘要: 针对反作用飞轮带有死区非线性输入特性的三轴稳定挠性航天器姿态机动控制问题,提出一种由变结构与神经网络自适应控制技术相结合的智能控制方法。首先,基于航天器非线性和低阶模态动力学模型设计了变结构输出反馈控制律,给出了滑模存在条件,保证闭环系统渐近稳定;其次,采用神经网络自适应控制技术对系统的不确定性因素进行补偿控制,并利用Lyapunov方法分析了系统的渐近稳定性。 智能控制的引入使得控制器具有很强的自学习能力和自适应能力,可有效降低不确定因素对系统产生的影响。最后,将本文提出的控制策略应用于三轴稳定挠性航天器的姿态机动控制,仿真结果表明本文方法是行之有效的。

关键词: 飞行器控制、导航技术, 挠性航天器, 姿态机动, 神经网络, 变结构控制

Abstract: An intelligent control algorithm combining variable structure control and neural network for attitude maneuvering of a threeaxis stabilized flexible spacecraft with dead zone nonlinear input induced by flywheel reaction was proposed. First, a variable structure output feedback control law was designed on the basis of nonlinear and lower order mode of the spacecraft dynamic model. Then an existing slide condition and closedloop asymptotical stability condition were given. Furthermore, network adaptive control technique was used to compensate system uncertainties and the stability analysis was conducted by using Lyapunov function. The introduction of intelligent control ensures the controller a good ability of selflearning and adaptation so that the influence of the uncertainty to the system was effectively reduced. Finally, the numerical simulations to the spacecraft were p

Key words: control and navigation technology of aerocraft, flexible spacecraft, attitude maneuvering, neural network, variable structure control

中图分类号: 

  • V448.2
[1] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[2] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
[3] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[4] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[5] 底晓强, 王英政, 李锦青, 从立钢, 祁晖. 基于量子细胞神经网络超混沌的视频加密方法[J]. 吉林大学学报(工学版), 2018, 48(3): 919-928.
[6] 王方石, 王坚, 李兵, 王博. 基于深度属性学习的交通标志检测[J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[7] 刘东亮, 王秋爽. 基于NGSIM数据的车辆瞬时速度获取方法[J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[8] 谢志江, 吴小勇, 范乃吉, 郭宗环, 袁岳军, 王康. 神光-III精密装校平台运动学分析[J]. 吉林大学学报(工学版), 2017, 47(5): 1504-1511.
[9] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
[10] 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[11] 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[12] 李琳辉, 伦智梅, 连静, 袁鲁山, 周雅夫, 麻笑艺. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报(工学版), 2017, 47(2): 384-391.
[13] 王庆年, 段本明, 王鹏宇, 拱印生, 朱庆林. 插电式混合动力汽车动力传动系参数优化[J]. 吉林大学学报(工学版), 2017, 47(1): 1-7.
[14] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[15] 孙大许, 兰凤崇, 何幸福, 陈吉清. 双电机四驱电动汽车自适应复合防抱死控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1405-1413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!