吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (增刊1): 423-427.

• 论文 • 上一篇    下一篇

长耳鸮翅膀的三维建模

廖庚华1,2, 杨莹1,2, 胡钦超1,2, 韩志武1,2, 任露泉1,2, 刘庆平1,2   

  1. 1. 吉林大学 工程仿生教育部重点实验室,长春 130022;
    2. 吉林大学 生物与农业工程学院, 长春 130022
  • 收稿日期:2012-04-18 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 刘庆平(1965-),男,高级工程师,博士研究生.研究方向:流体仿生减阻降噪.E-mail:liuqp@jlu.edu.cn E-mail:liuqp@jlu.edu.cn
  • 作者简介:廖庚华(1985-),男,博士研究生.研究方向:流体仿生减阻降噪.E-mail:liaogenghua@126.com
  • 基金资助:

    国家自然科学基金国际合作项目(50920105504);国家自然科学基金联合基金项目(U1134109);吉林省科技发展计划项目(20090340);高等学校博士学科点专项科研基金项目(20110061120048);吉林大学研究生创新基金项目(20121082).

Three-dimensional modeling of long-eared wing

LIAO Geng-hua1,2, YANG Ying1,2, HU Qin-chao1,2, HAN Zhi-wu1,2, REN Lu-quan1,2, LIU Qing-ping1,2   

  1. 1. Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China;
    2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
  • Received:2012-04-18 Online:2012-09-01 Published:2012-09-01

摘要: 通过对扫描获取的长耳鸮翅膀三维点云进行展向等距切片,依据翼型理论提取每个截面翼型的中弧线和厚度分布,采用最小二乘法拟合得到各公式系数,取平均系数以减小各翼型差异。对展向最大弧度、最大厚度、弦长和前缘线进行拟合修正,最终建立了翅膀的三维模型。翅膀模型的建立为数值分析探究长耳鸮翅膀良好气动和声学性能机理提供了前期基础,可将其应用于仿生扑翼飞行器上。

关键词: 工程仿生学, 长耳鸮翅膀, 三维建模, 最小二乘法

Abstract: The long-eared digital wing model was divided to several cross sections. Camber line and thickness distribution of every profile were extracted based on section theory. The least square method was used to fit the coefficients of the camber line and the thickness distribution, and the coefficients were averaged to decrease discrepancy. The three dimensional model of the owl wing was established by adjusting the maximum camber and thickness, the chord length and the position of the leading edge in spanwise direction. The study provided preliminary basis for simulating to explore the excellent aero performance and acoustical behavior of the long-eared wing, and which can be applied to the bionic flying robot.

Key words: engineering bionics, long-eared owl wing, three-dimensional geometry structuring, least square method

中图分类号: 

  • TB17
[1] Lilley G M. A study of the silent flight of the owl[C]//The 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France, 1998.

[2] Graham R R. The silent flight of owls[J]. Journal of Aeronaut Soc, 1934, 38: 837-843.

[3] 徐成宇,钱志辉,刘庆萍,等. 基于长耳鸮翼前缘的仿生耦合翼型气动性能[J].吉林大学学报: 工学版,2010,40(1): 108-112. Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(1): 108-112.

[4] 陈坤,刘庆平,廖庚华,等. 利于雕鸮羽毛的消音特性降低小型轴流风机的气动噪声[J].吉林大学学报: 工学版,2012,42(1): 79-84. Chen Kun, Liu Qing-ping, Liao Geng-hua, et al. Aerodynamic noise reduction of small axial fan using hush characteristics of eagle owl feather[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(1): 79-84.

[5] 金敬福,马毅,刘玉荣,等. 长耳鸮翼型组的气动特性分析[J].吉林大学学报: 工学版,2010,40(增刊2): 278-281. Jin Jing-fu, Ma Yi, Liu Yu-rong, et al. Aerodynamic analysis of the family of airfoil of owl[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(Sup.2): 278-281.

[6] Liu Tian-shu, Kuykendoll K, Rhew R, et al. Avian wings[C]//The 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, 2004.

[7] Liu Tian-shu, Kuykendoll K, Rhew R, et al. Avian wing geometry and kinematics[J]. AIAA Journal, 2006, 44(5): 954-963.

[8] Kln Stephan, Bachmann Thomas, Klaas Michael, et al. Experimental analysis of the flow field over a novel owl based airfoil[J]. Exp Fluids, 2009, 46(5): 975-989.

[9] Han Cheolheui. Investigation of unsteady aerodynamic characteristics of a seagull wing in level flight[J]. Journal of Bionic Engineering, 2009, 6(4): 408- 414.

[10] Kln S, Burgmann S, Bachmann T, et al. Surface structure and dimensional effects on the aerodynamics of an owl-based wing model[J]. European Journal of Mechanics B/Fluids, 2012, 33: 58-73.

[11] Oehme H, Kitzler U. On the geometry of the avian wing(studies on the biophysics and physiology of avian flightⅡ)[Z].NASA-TT-F-169,1975.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[5] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[7] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[8] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[9] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[10] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[11] 祁若龙, 张伟, 王铁军, 李正. 仿人头颈部机器人跟踪运动控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1595-1601.
[12] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[13] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[14] 秦余钢, 马勇, 张亮, 李腾飞. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[15] 姚向明, 赵鹏, 禹丹丹. 基于平均策略的城市轨道交通动态O-D矩阵估计[J]. 吉林大学学报(工学版), 2016, 46(1): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!