吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1906-1912.doi: 10.13229/j.cnki.jdxbgxb201506026

• • 上一篇    下一篇

考虑摩擦特性的机器人柔性关节鲁棒控制器设计

陈健, 葛连正, 李瑞峰   

  1. 哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150080
  • 收稿日期:2014-03-17 出版日期:2015-11-01 发布日期:2015-11-01
  • 通讯作者: 李瑞峰(1965-),男,教授,博士生导师.研究方向:工业机器人技术,智能服务机器人技术.E-mail:lrf100@hit.edu.cn
  • 作者简介:陈健(1983-),男,博士.研究方向:工业机器人鲁棒控制.E-mail:phevanschen@gmail.com
  • 基金资助:
    国家自然科学基金项目(61273339)

Design of robust controller for robot flexible joint with friction characteristic

CHEN Jian, GE Lian-zheng, LI Rui-feng   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
  • Received:2014-03-17 Online:2015-11-01 Published:2015-11-01

摘要: 针对非线性摩擦特性对柔性关节机器人控制性能的影响,提出了采用H鲁棒原理设计控制器的方法。采用描述函数方法在频域分析非线性摩擦的描述函数,将非线性摩擦因素表达为相对于名义模型的逆加性不确定性。依据控制性能要求选取合理的控制量、噪声抑制和跟踪误差加权函数,将其转换为LMI最优问题进行求解。时域仿真结果表明:所设计控制器不仅具有鲁棒性能,并且具有快速、准确地跟踪轨迹指令的能力以及抑制干扰的作用。

关键词: 机械制造自动化, 柔性关节机器人, 非线性摩擦, 描述函数法, 鲁棒控制

Abstract: A robust controller framework for flexible joint robot is presented, in which the effect of nonlinear friction on control performance is considered. The nonlinear friction is denoted as inverse additive output uncertainty relative to the nominal model. Based on this the describing function is analyzed in frequency domain, and the weighting function of nonlinear friction is further calculated. Combing the friction uncertainty, the Linear Matrix Inequality (LMI) optimization is proposed as the benchmark for controller design, which leads to good performance robustness. Simulation results show that the proposed controller can provide excellent command tracking and regulation performance.

Key words: robot joint with flexibility, nonlinear friction, describing function method, robust control

中图分类号: 

  • TP241.2
[1] Moberg S, Hanssen S. On feedback linearization for robust tracking control of flexible joint robots[J]. World Congress, 2008, 17(1):12218-12223.
[2] Yeon J S, Park J H. Practical robust control for flexible joint robot manipulators[C]∥IEEE International Conference on Robotics and Automation,California, USA,2008:3377-3382.
[3] Akbari M E, Alizadeh G, Khanmohammadi S, et al. Nonlinear H ∞ controller for flexible joint robots with using feedback linearization[J]. International Journal on Computer Science & Engineering, 2011, 3(2):451-466.
[4] Elmaraghy H A, Lahdhiri T. Robust linear control of flexible joint robot systems[J]. Journal of Intelligent and Robotic Systems,2002,34(4):335-356.
[5] Patel A,Neelgund R,Wathore A,et al. Robust control of flexible joint robot manipulator[C]∥Industrial Technology,Mumbai,2006:649-653.
[6] Akbari M, Alizadeh G, Khanmohammadi S, et al. Nonlinear H ∞ controller for flexible joint robots with using feedback linearization[J]. International Journal of Engineering Science,2011,3(4):451-466.
[7] Yim J G, Yeon J S, Park J H, et al. Robust control using recursive design method for flexible joint robot manipulator[C]∥IEEE International Conference on Robotics and Automation, Roma, Italy,2007:3805-3810.
[8] Karlsson A P. Tool position estimation of a flexible industrial robot using recursive bayesian methods[J]. Proceedings IEEE International Conference on Robotics & Automation, 2012, 20(10):5234 - 5239.
[9] Nassirharand A, Firdeh S R M. Computer-aided design of nonlinear H ∞ controllers using describing functions[C]∥Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, Munich,Germany,2006:1952-1957.
[10] 刘国平. 机械系统中的摩擦模型及仿真[D]. 西安:西安理工大学机械与精密仪器工程学院,2007:35-37.
Liu Guo-ping. Mechanical friction system model and simulation[D]. Xi'an:Mechanical and Precision Instrument Engineering, Xi'an University of Technology, 2007: 35-37.
[11] Moghaddam M, Andrew A. On robust control of flexible joint robots using describing function and sector bounded nonlinearity descriptions[J]. Journal of Intelligent and Robotic Systems,1997,20(2):333-348.
[12] Feeny B, Moon F C. Chaos in a forced dry-friction oscillator: experiments and numerical modelling[J]. Journal of Sound & Vibration, 1994, 170(3):303-323.
[13] Wernholt E, Gunnarsson S. Nonlinear identification of a physically parameterized robot model[J]. Control Engineering,2006,14(1):143-148.
[14] Schwartz C, Gran R. Describing function analysis using Matlab and simulink[J]. Control Systems, 2001,21(4):19-26.
[15] Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization[J]. IEEE Transactions on Automatic Control,1997,42(7):896-911.
[1] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[2] 任书楠, 杨向东, 王国磊, 刘志, 陈恳. 大部件喷涂中的移动机械臂站位规划[J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[3] 李静, 张家旭. 基于状态反馈的车辆底盘集成H鲁棒控制[J]. 吉林大学学报(工学版), 2016, 46(3): 685-691.
[4] 沈志煌, 姚斌, 陆如升, 冯伟, 张祥雷, 王萌萌. 精密螺杆转子齿廓成形磨削的误差分析[J]. 吉林大学学报(工学版), 2016, 46(3): 831-838.
[5] 钱立军, 胡伟龙, 辛付龙, 邱利宏. 基于H的车辆横向运动鲁棒控制[J]. 吉林大学学报(工学版), 2015, 45(6): 1757-1762.
[6] 王延忠, 侯良威, 吕庆军, 赵兴福, 吴灿辉. 基于总线控制的面齿轮复杂曲面加工技术[J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[7] 郭黎滨, 张彬, 崔海, 张志航. 微细电火花线切割表面三维粗糙度的结构性参数[J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[8] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[9] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[10] 佟金, 王亚辉, 卢纪生, 张书军, 陈东辉. 基于CCD的大型台阶轴锻件同轴度测量[J]. 吉林大学学报(工学版), 2013, 43(04): 945-950.
[11] 张雷, 赵云伟, 杨卓, 赵继. 电流变抛光液剪切屈服特性[J]. , 2012, 42(05): 1145-1150.
[12] 史永杰, 郑堤, 胡利永, 王龙山. 非球面件数控研抛力、研抛工具位置和姿态解耦技术[J]. 吉林大学学报(工学版), 2012, 42(01): 116-121.
[13] 矫德余. 四轮驱动车鲁棒轨迹跟踪控制器设计[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 301-305.
[14] 常胜1,2,许洪国1,刘宏飞1. H回路成形半挂汽车列车鲁棒控制器设计[J]. 吉林大学学报(工学版), 2011, 41(6): 1571-1576.
[15] 张英芝1,郑锐2,申桂香1,王志琼1,李怀洋1,郑珊1. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报(工学版), 2011, 41(6): 1636-1640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!