吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 998-1006.doi: 10.13229/j.cnki.jdxbgxb.20210797

• 车辆工程·机械工程 • 上一篇    下一篇

空冷中冷器百叶窗翅片结构参数优化

李胜1(),朱佳2,黄德惠1,陈存福1,费洪庆1,丰伟1,胡兴军2()   

  1. 1.一汽解放青岛汽车有限公司,山东 青岛 266043
    2.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2021-08-18 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 胡兴军 E-mail:18863900@163.com;hxj@jlu.edu.cn
  • 作者简介:李胜(1976-),男,高级工程师,博士.研究方向:汽车系统动力学.E-mail: 18863900@163.com
  • 基金资助:
    国家自然科学基金项目(51875238)

Structural parameters optimization of louver fins of air⁃cooled charge air cooler

Sheng LI1(),Jia ZHU2,De-hui HUANG1,Cun-fu CHEN1,Hong-qing FEI1,Wei FENG1,Xing-jun HU2()   

  1. 1.China FAW Jiefang Automotive Co. ,Ltd. (Qingdao),Qingdao 266043,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-08-18 Online:2023-04-01 Published:2023-04-20
  • Contact: Xing-jun HU E-mail:18863900@163.com;hxj@jlu.edu.cn

摘要:

基于中心复合设计对空冷中冷器百叶窗翅片的3个几何参数开窗角度、翅片间距和百叶间距,进行三因素五水平的试验设计,然后建立以传热特性Nu和流动阻力特性f为目标函数的完全二阶回归模型,并采用响应曲面法分析各结构参数的影响重要性,最后根据多目标遗传算法进行寻优计算。结果表明:传热特性主要受翅片间距影响,而阻力特性受开窗角度影响最大,多目标优化得到一组Pareto解集,决策者可以根据实际需求在Pareto解集中进行选取。

关键词: 机械工程, 空冷中冷器, 百叶窗翅片, 中心复合设计, 响应面法

Abstract:

Based on the central composite design, the three geometric parameters of the air-cooled intercooler shutter fins, the opening angle, the fin spacing, and the louver spacing, are tested with three factors and five levels. Then a complete second-order regression model with the heat transfer characteristics Nu and the flow resistance characteristics f as the objective function is established, and the response surface analysis is carried out to analyze the importance of the influence of each structural parameter, and finally the optimization calculation is carried out according to the multi-objective genetic algorithm. The results show that the heat transfer characteristics are mainly affected by the fin spacing, while the resistance characteristics are most affected by the opening angle. Multi-objective optimization can obtain a set of Pareto solutions, which can be selected by the decision maker according to actual needs.

Key words: mechanical engineering, air-cooled charge air cooler, louver fin, central composite design, response surface method

中图分类号: 

  • U461.8

图1

百叶窗翅片几何结构"

图2

计算域"

图3

计算域网格"

表1

网格无关性验证"

序号网格数量h/[W·m-2·K-1ΔP/Pa偏差h/%偏差ΔP/%
121 346 758152.3477.62.40.5
232 298 984149.1475.90.30.1
343 585 629148.7475.4--

图4

实验设备"

图5

试验结果与仿真结果对比"

表2

三因素五水平取值方案"

序号因子取值水平
-α-101+α
1开窗角度φ/(°)1012.51517.520
2翅片间距PLF /mm22.252.52.753
3百叶间距LP /mm2.52.7533.253.5

表3

实验方案及数值仿真结果"

序号φPLFLPNuf
1-α008.2960.176
2-11-18.9360.177
3-1-1-18.5430.213
4-1-118.2370.285
5-1119.3960.224
60008.8430.279
70008.8340.280
80008.8360.280
90008.8280.280
100008.9500.279
110008.8360.280
120+α09.9980.225
130-α07.7360.389
1400+α9.1380.376
1500-α8.6710.204
161-118.4730.497
171-1-18.1700.352
181119.8780.371
1911-19.4320.264
20+α008.9740.459

表4

百叶翅片Nu回归模型的方差分析"

来源自由度Adj SSAdj MSFP
合计195.783 52
模型75.672 020.810 2987.210.000
线性35.291 011.763 67189.810.000
φ10.301 530.301 5332.450.000
PLF14.778 104.778 10514.240.000
LP10.211 380.211 3822.750.000
平方项10.078 110.078 118.410.013
φ*φ10.078 110.078 118.410.013
交互项30.302 900.100 9710.870.001
φ*PLF10.155 270.155 2716.710.002
φ*LP10.044 380.044 384.780.049
PLF*LP10.103 250.103 2511.110.006
误差120.111 500.009 29
失拟80.100 900.012 614.760.074
纯误差40.010 590.002 65

表5

百叶翅片f回归模型的方差分析"

来源自由度Adj SSAdj MSFP
合 计190.147 184
模型90.147 0780.016 3421536.690.000
线性30.139 8840.046 6284384.560.000
φ10.082 5300.082 5307760.540.000
PLF10.025 4350.025 4352391.740.000
LP10.031 9190.031 9193001.410.000
平方项30.002 7940.000 93187.590.000
φ*φ10.002 2090.002 209207.680.000
PLF*PLF10.001 1320.001 132106.420.000
LP*LP10.000 1550.000 15514.580.003
交互项30.004 4000.001 467137.910.000
φ*PLF10.001 7170.001 717161.410.000
φ*LP10.002 1970.002 197206.550.000
PLF*LP10.000 4870.000 48745.770.000
误差100.000 1060.000 011
失拟60.000 1050.000 01741.730.001
纯误差40.000 0020.000 000

图6

百叶窗翅片Nu的响应曲面分析"

图7

百叶窗翅片f的响应曲面分析"

图8

Pareto前沿"

1 沙拉·塞库利克.换热器设计技术[M].程林,译.北京:机械工业出版社, 2010.
2 钱颂文.换热器设计手册[M].北京:化学工业出版社, 2003.
3 Ferrero M, Scattina A, Chiavazzo E, et al. Louver finned heat exchangers for automotive sector: numerical simulations of heat transfer and flow resistance coping with industrial constraints[J]. Journal of Heat Transfer, 2013, 135(12):1-12.
4 Kwon Young Chul, Chang Keun Sun. Heat transfer and friction characteristics of louver fin and tube heat exchangers under wet conditions[J]. Applied Chemistry for Engineering, 2008, 19(1): 73-79.
5 Javaherdeh K, Vaisi A, Moosavi R. The effects of fin height, fin-tube contact thickness and louver length on the performance of a compact fin-and-tube heat exchanger[J]. International Journal of Heat and Technology, 2018, 36(3): 825-834.
6 王任远, 李建雄, 吴金星. 散热器空气侧百叶窗翅片结构参数优化[J]. 流体机械, 2013, 41(6): 74-78.
Wang Ren-yuan, Li Jian-xiong, Wu Jin-xing. Structure parameters optimized for louvered fin in air side of radiator[J]. Fluid Machinery, 2013, 41(6): 74-78.
7 Taylor J R. 误差分析导论-物理测量中的不确定度[M]. 王中宇,译. 北京: 高等教育出版社, 2015: 43-105.
8 胡兴军,张靖龙,辛俐,等. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报: 工学版, 2021, 51(5): 1557-1564.
Hu Xing-jun, Zhang Jing-long, Xin Li, et al. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air-cooled charge air cooler[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1557-1564.
9 胡兴军, 张靖龙, 罗雨霏, 等. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报: 工学版, 2021, 51(6): 1933-1942.
Hu Xing-jun, Zhang Jing-long, Luo Yu-fei, et al. Influence investigation of cooling tube structure and airflow direction on the thermal-hydraulic performance of air-cooled charge air cooler[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 1933-1942.
10 Han H Z, Li B X, Shao W. Multi-objective optimization of outward convex corrugated tubes using response surface methodology[J]. Applied Thermal Engineering, 2014, 70 (1): 250-262.
11 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 23(1): 87-91.
Zhang Zhi-hong, He Zhen, Guo Wei. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 23(1): 87-91.
12 Qian Zuo-qin, Wang Qiang, Cheng Jun-lin, et al. Simulation investigation on inlet velocity profile and configuration parameters of louver fin[J]. Applied Thermal Engineering, 2018, 138: 173-182.
13 王维. 外胀式螺旋波纹管强化传热机理及换热器优化研究[D]. 哈尔滨:哈尔滨工业大学能源科学与工程学院, 2019.
Wang Wei. Study on the heat transfer mechanism and heat exchanger optimization of outward helically corrugated tube[D]. Harbin: School of Energy Science and Engineering, Harbin Institute of Technology, 2019.
14 Kamel M S, Mojtaba M, Soroush M, et al. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology[J]. Powder Technology, 2017, 313: 99-111.
15 Liu Y W, Liu L, Liang L L, et al. Thermodynamic optimization of the recuperative heat exchanger for Joule-Thomson cryocoolers using response surface methodology[J]. International Journal of Refrigeration, 2015, 60: 155-165.
16 Han H Z, Yu R T, Li B X, et al. Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II[J]. International Journal of Heat and Mass Transfer, 2019, 131: 781-794.
17 Whitley D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85.
18 陈凯,汪双凤. 基于遗传算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(2): 384-388.
Chen Kai, Wang Shuang-feng. Optimization of air-cooled battery thermal management system based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(2): 384-388.
19 Hemmat E M, Hajmohammad H, Moradi R, et al. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method[J]. Applied Thermal Engineering, 2017, 112: 1648-1657.
20 易凯. “三条红线”约束下的钦州市水资源优化配置研究[D]. 南宁:广西大学土木建筑工程学院, 2017.
Yi Kai. The research on water resources optimal allocation of qinzhou city under constraint of three red lines[D]. Nanning: College of Civil and Architectural Engineering, Guangxi University, 2017.
21 孙靖明,梁迎春. 机械优化设计[M]. 北京:机械工业出版社, 2012.
[1] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[2] 于立娟,安阳,何佳龙,李国发,王升旭. 机电装备载荷谱外推技术研究进展及发展趋势[J]. 吉林大学学报(工学版), 2023, 53(4): 941-953.
[3] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[4] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[5] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[6] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[7] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[8] 章子玲,胡雄,亓寅,王微,陶志强,刘志峰. 基于向量投影响应面的数控机床几何误差分配方法[J]. 吉林大学学报(工学版), 2022, 52(2): 384-391.
[9] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[10] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[11] 胡兴军,张靖龙,罗雨霏,辛俐,李胜,胡金蕊,兰巍. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1933-1942.
[12] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[13] 杨开宇,刘伟,王天皓,于显利,高印寒,马喜来. 一种多导体传输线串扰不确定性问题的计算方法[J]. 吉林大学学报(工学版), 2021, 51(2): 747-753.
[14] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[15] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!