吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1550-1565.doi: 10.13229/j.cnki.jdxbgxb.20221496

• 综述 • 上一篇    

桥梁抗震结构体系发展述评:从延性到韧性

江辉1,2(),李新1,白晓宇3   

  1. 1.北京交通大学 土木建筑工程学院,北京 100044
    2.北京市轨道交通线路安全与防灾工程技术研究中心,北京 100044
    3.中交公路长大桥建设国家工程研究中心有限公司,北京 100088
  • 收稿日期:2022-11-23 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:江辉(1977-),男,教授,博士.研究方向:桥梁抗震减灾与工程结构减灾.E-mail:jianghui@bjtu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2022YJS122);中国国家铁路集团有限公司重大项目(K2022G014);国家自然科学基金项目(51378050);高等学校学科创新引智计划(“111计划”)项目(B13002);北京市自然科学基金项目(8192035);中国国家铁路集团系统性重大课题项目(P2019G002)

Review on development of bridge seismic structural systems: from ductility to resilience

Hui JIANG1,2(),Xin LI1,Xiao-yu BAI3   

  1. 1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.Beijing Engineering and Technology Research Center of Rail Transit Line Safety and Disaster Prevention,Beijing 100044,China
    3.China Communications Construction Company Highway Bridges National Engineering Research Centre Co. ,Ltd. ,Beijing 100088,China
  • Received:2022-11-23 Online:2023-06-01 Published:2023-07-23

摘要:

为加快桥梁震后修复、减轻震灾损失,对韧性结构体系在桥梁中的应用研究进行了系统梳理、总结和展望。首先,回顾了韧性结构体系的发展历程。其次,从抗震机理和工程应用的角度,阐述了韧性结构体系和延性结构体系的异同,着重介绍了实现桥梁抗震韧性的重要途径——摇摆结构体系,论述了当前4种典型摇摆结构体系的工作机理、滞回曲线和工程应用。再次,从摇摆结构体系、自复位耗能装置和抗震设计方法等方面对桥梁韧性结构体系的国内外前沿进展进行了梳理、总结。最后,对桥梁韧性结构体系的现存问题和发展趋势进行了归纳和展望。

关键词: 桥梁工程, 抗震结构体系, 综述, 韧性, 延性

Abstract:

In order to accelerate post-earthquake repair of bridges and reduce earthquake losses, a systematic review, summary, and outlook were conducted on the research of resilient structural systems in bridges. Firstly, the development history of resilient structural systems was reviewed. Secondly, from the perspective of seismic mechanism and engineering application, the similarities and differences between ductile and resilient structural systems were elaborated. Emphasis was placed on the important way to achieve earthquake-resistant resilient in bridges the rocking structural systems, and the working mechanisms, hysteresis curves, and engineering applications of the current four typical rocking structural systems were discussed. Thirdly, the progress of the domestic and foreign cutting-edge researches in resilient structural systems was summarized and analyzed from the aspects of rocking structural systems, self-centering energy dissipation devices, and seismic design methods. Finally, the existing problems and development trends of bridge resilient structural systems were summarized and prospected.

Key words: bridge engineering, seismic structural systems, review, resilience, ductility

中图分类号: 

  • U442.5

图1

不同类型摇摆柱的抗震机理和理想滞回曲线"

图2

摇摆桥墩在新西兰South Rangitikei铁路桥中的应用[23]"

图3

中国黄徐路跨线桥摇摆桥墩的构造方案[13]"

表1

延性结构体系与韧性结构体系对比"

抗震结构体系抗震机理滞回曲线初期投入成本后期维护成本震后损失工程应用
延性通过延性构件耗能较低较低人员伤亡较少,但直接和间接经济损失较高。广泛
韧性通过可更换构件耗能,具有自复位能力。自复位构造和耗能装置的应用,导致初期投入费用较高。预应力损失和耗能装置耐久性不足,导致后期维护费用较高。人员伤亡和经济损失均较低。仅有少数示范性工程

图4

受控摇摆桥墩的试验研究[30]"

图5

结合耗能装置的受控摇摆桥墩试验研究[32]"

图6

传统桥墩与结合耗能装置的受控摇摆桥墩的失效机制对比"

图7

新型基础摇摆结构体系"

图8

基于可更换构件的结构体系"

图9

改进SED"

图10

摇摆结构体系的有限元模拟方法"

图11

附加SED桥墩直接基于位移的抗震设计流程[85]"

1 Kawashima K, Macrae G A, Hoshikuma J, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530.
2 Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
3 Hyogo Earthquake Engineering Research Center. Report of the first joint planning meeting for the second phase of NEES/E-Defense collaborative research on earthquake engineering[R]. Berkeley: University of California, 2009.
4 吕西林,全柳萌,蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 37(3): 1-9.
Xi-lin Lü, Quan Liu-meng, Jiang Huan-jun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engingeering and Engineering Dynamics, 2017, 37(3): 1-9.
5 袁万城, 王思杰, 李怀峰, 等. 桥梁抗震智能与韧性的发展[J]. 中国公路学报, 2021, 34(2): 98-117.
Yuan Wan-cheng, Wang Si-jie, Li Huai-feng, et al. Development of intelligence and resilience for bridge seismic design[J]. China Journal of Highway and Transport, 2021, 34(2): 98-117.
6 Makris N. A half-century of rocking isolation[J]. Earthquakes and Structures, 2014, 7(6): 1187-1221.
7 Housner G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
8 Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation[J]. Journal of Structural Engineering, 2008, 134(1): 96-107.
9 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报: 自然科学版, 2011, 39(7): 941-948.
Lv Xi-lin, Chen Yun, Mao Yuan-jun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University(Natural Science), 2011, 39(7): 941-948.
10 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10.
Zhou Ying, Lv Xi-lin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10.
11 陆新征, 曾翔, 许镇, 等. 建设地震韧性城市所面临的挑战[J]. 城市与减灾, 2017, 115(4): 29-34.
Lu Xin-zheng, Zeng Xiang, Xu Zhen, et al. Challenges of building earthquake resilient cities[J]. City and Disaster Reduction, 2017, 115(4): 29-34.
12 杜修力, 周雨龙, 韩强, 等. 摇摆桥墩的研究综述[J]. 地震工程与工程振动, 2018, 38(5): 1-11.
Du Xiu-li, Zhou Yu-long, Han Qiang, et al. State-of-the-art on rocking piers[J]. Earthquake Engingeering and Engineering Dynamics, 2018, 38(5): 1-11.
13 Han Q, Jia Z L, Xu K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188(11): 218-232.
14 Guan Z G, Zhang J, Li J. Multilevel performance classifications of tall RC bridge columns toward postearthquake rehabilitation requirements[J]. Journal of Bridge Engineering, 2017, 22(10): No.04017080.
15 夏修身, 陈兴冲. 铁路高墩桥梁基底摇摆隔震与墩顶减震对比研究[J]. 铁道学报, 2011, 33(9): 102-107.
Xia Xiu-shen, Chen Xing-chong. Controlled rocking and pier top seismic isolation of railway bridge with tall piers[J]. Journal of the China Railway Society, 2011, 33(9): 102-107.
16 Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(7): 1065-1080.
17 Fang C, Wang W. Shape Memory Alloys for Seismic Resilience[M]. Singapore: Springer, 2019.
18 韩强, 董慧慧, 王利辉, 等. 基于可更换构件的可恢复功能桥梁防震结构研究综述[J]. 中国公路学报, 2021, 34(9): 215-230.
Han Qiang, Dong Hui-hui, Wang Li-hui, et al. Review of seismic resilient bridge structures with replaceable members[J]. China Journal of Highway and Transport, 2021, 34(9): 215-230.
19 . 公路桥梁抗震设计规范 [S].
20 . 铁路工程抗震设计规范 [S].
21 AA Bridge Design Specification[S].
22 Eurocode 8—2005. Eurocode 8: Design of structures for earthquake resistance–Part 2: Bridges [S].
23 Cormack L G. The design and construction of the major bridges on the mangaweka rail deviation[J].Transactions of the Institute of Professional Engineers New Zealand, 1988: 16-23.
24 Priestley M J N, Seible F, Calvi G M. Seismic Design and Retrofit of Bridges[M]. State of New Jersey: John Wiley and Sons, 1996.
25 Hinman J, Toan V, Thoman S. Seismic retrofit of 1958 carquinez bridge[J]. Transportation Research Record, 1998, 1624(1): 54-63.
26 Dowdell D J, Hamersley B A. Lions'gate bridge north approach—seismic retrofit[C]∥Proceedings of the Third International Conference, Rotterdam, Balkema, 2000: 319-326.
27 Astaneh A, Shen J H. Rocking behavior and retrofit of tall bridge piers[C]∥Structural Engineering in Natural Hazards Mitigation, New York, USA, 1993: 121-126.
28 Routledge P, Mchaffie B, Cowan M, et al. Wigram-Magdala link bridge: low-damage details for a more efficient seismic design philosophy[J]. Structural Engineering International, 2020, 30(2): 177-184.
29 Mashal M, Palermo A. Low-damage seismic design for accelerated bridge construction[J]. Journal of Bridge Engineering, 2019, 24(7): No.04019066.
30 Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[R]. New York: National Center for Earthquake Engineering Research, 1997.
31 Zhou Y L, Han Q, Du X L, et al. Shaking table tests of post-tensioned rocking bridge with double-column bents[J]. Journal of Bridge Engineering, 2019, 24(8): 04019080.
32 Palermo A, Pampanin S. Enhanced seismic performance of hybrid bridge systems: comparison with traditional monolithic solutions[J]. Journal of Earthquake Engineering, 2008, 12(8): 1267-1295.
33 魏博, 贾俊峰, 欧进萍, 等. 外置耗能器对自复位预制RC桥墩抗震性能的影响研究[J]. 中国公路学报, 2021, 34(2): 220-229.
Wei Bo, Jia Jun-feng, Jin-ping Ou, et al. Study on the effect of exterior dampers on the seismic performance of self-centering precast bridge columns[J]. China Journal of Highway and Transport, 2021, 34(2): 220-229.
34 Wang W, Fang C, Shen D Y, et al. Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation[J]. Engineering Structures, 2021, 242(17): No.112527.
35 Jia J F, Zhang K D, Wu S W, et al. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions[J]. Engineering Structures, 2020, 221(20): No.111037.
36 孙治国, 赵泰儀, 王东升, 等. 基于RSC体系的双层桥梁排架墩地震损伤控制设计[J]. 中国公路学报, 2020, 33(3): 97-106.
Sun Zhi-guo, Zhao Tai-yi, Wang Dong-sheng, et al. Seismic damage control design for double-deck bridge bents based on rocking self-centering system[J]. China Journal of Highway and Transport, 2020, 33(3): 97-106.
37 Wang Z, Wang J Q, Tang Y C, et al. Seismic behavior of precast segmental uhpc bridge columns with replaceable external cover plates and internal dissipaters[J]. Engineering Structures, 2018, 177(24): 540-555.
38 Zheng Y, Fang C, Liang D, et al. An innovative seismic-resilient bridge with shape memory alloy-washer-based footing rocking RC piers[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(5): 549-567.
39 刘正楠, 陈兴冲, 张永亮, 等. 非规则铁路连续梁桥抗震体系优化[J]. 中国铁道科学, 2020, 41(170): 57-63.
Liu Zheng-nan, Chen Xing-chong, Zhang Yong-liang, et al. Optimization of aseismic system for irregular railway continuous beam bridge[J]. China Railway Science, 2020, 41(170): 57-63.
40 刘雪山, 李建中, 张宏杰, 等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报, 2021, 34(11): 116-128.
Liu Xue-shan, Li Jian-zhong, Zhang Hong-jie, et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport, 2021, 34(11): 116-128.
41 Elgawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5): 616-628.
42 Billington S L, Yoon J K. Cyclic response of unbonded posttensioned precast columns with ductility fiber-reinforced concrete[J]. Journal of Bridge Engineering, 2004, 9(4): 353-363.
43 何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4): 122-127.
He Ming-hua, Xin Ke-gui, Guo Jia. Local stability study of new bridge piers with self-centering joints[J]. Engineering Mechanics, 2012, 29(4): 122-127.
44 Cheng C T. Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12): 3426-3433.
45 Deng L J, Kutter B L, Kunnath S K. Centrifuge modeling of bridge systems designed for rocking foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(3): 335-344.
46 Guan Z G, Chen X, Li J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations[J]. Engineering Structures, 2018, 168(15): 889-902.
47 Anastasopoulos I, Gazetas G, Loli M, et al. Soil failure can be used for seismic protection of structures[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 309-326.
48 Gavras A G, Kutter B L, Hakhamaneshi M, et al. Database of rocking shallow foundation performance: dynamic shaking[J]. Earthquake Spectra, 2020, 36(2): 960-982.
49 El-hawat O, Fatahi B, Taciroglu E. Novel post-tensioned rocking piles for enhancing the seismic resilience of bridges[J]. Earthquake Engineering and Structural Dynamics, 2021, 51(2): 393-417.
50 贾毅, 赵人达, 李福海, 等. 减隔震混合装置对大跨度斜拉桥地震响应的影响[J]. 吉林大学学报: 工学版, 2020, 50(4): 1411-1418.
Jia Yi, Zhao Ren-da, Li Fu-hai, et al. Effects of hybrid seismic isolation device on seismic response of long-span cable-stayed bridge[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1411-1418.
51 Wang W, Fang C, Zhao Y, et al. Self-centering friction spring dampers for seismic resilience[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(9): 1045-1065.
52 韩强, 贾振雷, 王晓强, 等. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150, 190.
Han Qiang, Jia Zhen-lei, Wang Xiao-qiang, et al. Behavior test and restoring force model of disc-spring self-centering buckling-restrained braces[J]. Engineering Mechanics, 2018, 35(6): 144-150, 190.
53 Wang W, Fang C, Shen D, et al. Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation[J]. Engineering Structures, 2021, 242(15): No.112527.
54 Fang C, Wang W, Shen D. Development and experimental study of disc spring-based self-centering devices for seismic resilience[J]. Journal of Structural Engineering, 2021, 147(7): No.04021094.
55 Chen Jun-bai, Wang W, Fang C. Manufacturing, testing and simulation of novel SMA-based variable friction dampers with enhanced deformability[J]. Journal of Building Engineering, 2022, 45(1): No.103513.
56 Jeffrey E, Constantin C, ROBERT T. Design and testing of an enhanced- elongation telescoping self-centering energy-dissipative brace[J]. Journal of Structural Engineering, 2015, 141(6): No.04014163.
57 刘云帅, 韩建平. 自复位单向摩擦阻尼器梁桥数值模拟及混合试验[J]. 土木工程学报, 2020, 53(): 294-300.
Liu Yun-shuai, Han Jian-ping. Numerical simulation and hybrid test of the girder bridge with self-centering unidirectional friction damper[J]. China Civil Engineering Journal, 2020, 53(Sup.2): 294-300.
58 Xiao Y, Marc O E, Zhou Y, et al. Low-prestressing, self-centering energy dissipative brace[J]. Earthquake Engineering & Structural Dynamics, 2022, 51(12): 2837-2857.
59 Jiang H, Song G, Huang L, et al. Development and application of a deformation-amplified self-centering energy dissipation device[J]. Engineering Structures, 2023, 280(7): No.115671.
60 Fang C, Wang W, Zhang A, et al. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs[J]. Journal of Structural Engineering, 2019, 145(10): No.04019109.
61 Liang D, Zheng Y, Fang C, et al. Shape memory alloy (SMA)-cable-controlled sliding bearings: development, testing, and system behavior[J]. Smart Materials and Structures, 2020, 29(8): No.085006.
62 Fang C, Ping Y, Chen Y, et al. Seismic performance of self-centering steel frames with SMA-viscoelastic hybrid braces[J]. Journal of Earthquake Engineering, 2020, 10(26): 1-28.
63 吕兆华, 平奕炜, 方成, 等. SMA-VED混合自复位支撑钢框架地震易损性与风险分析[J]. 世界地震工程, 2022, 38(2): 10-20.
Lv Zhao-hua, Ping Yi-wei, Fang Cheng, et al. Seismic fragility analysis and risk assessment of SMA-VED hybrid self-centering braced steel frames[J]. World Earthquake Engineering, 2022, 38(2): 10-20.
64 张哲熹,方成,王伟,等. Fe-SMA的材料特性及在土木工程中的应用进展[J]. 防灾减灾工程学报, 2022, 42(2): 411-424.
Zhang Zhe-xi, Fang Cheng, Wang Wei, et al. Material properties of Fe-SMA and its application in civil engineering, 2022, 42(2): 411-424.
65 Dong H H, Du X L, Han Q, et al. Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces[J]. Bulletin of Earthquake Engineering, 2019, 17(6): 3255-3281.
66 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
Xu Long-he, Wu Hu. Seismic performance study along the transverse direction of cable-stayed bridges with self-centering energy dissipation braces[J]. Engineering Mechanics, 2019, 36(4): 177-187.
67 Zhou P, Liu M, Li H, et al. Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers[J]. Structural Control and Health Monitoring, 2018, 25(7): No.e2180.
68 Mishra S K, Gur S, Roy K, et al. Response of bridges isolated by shape memory alloy rubber bearing[J]. Journal of Bridge Engineering, 2016, 21(3): No.04015071.
69 Li S, Dezfuli F H, Wang J Q, et al. Longitudinal seismic response control of long-span cable-stayed bridges using shape memory alloy wire-based lead rubber bearings under near-fault records[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(5): 703-728.
70 Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(3): 331-354.
71 Pampanin S, Priestley M J N, Sritharan S. Analytical modelling of the seismic behavior of precast concrete frames designed with ductility connections[J]. Journal of Earthquake Engineering, 2001, 5(3): 329-367.
72 Aslam M, Godden W G, Scalise D T. Earthquake rocking response of rigid bodies[J]. Journal of the Structural Division, 1980, 106(2): 377-392.
73 Makris N, Zhang J. Rocking response and overturning of anchored equipment under seismic excitation[R]. Berkeley: Pacific Earthquake Engineering Research Center, 1999.
74 Psycharis I N, Jennings P C. Rocking of slender rigid bodies allowed to uplift[J]. Earthquake Engineering and Structural Dynamics, 1983, 11(1): 57-76.
75 Chatzis M N, Smyth A W. Robust modeling of the rocking problem[J]. Journal of Engineering Mechanics, 2012, 138(3): 247-262.
76 Palermo A, Pampanin S, Calvi G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(6): 899-921.
77 孙治国, 赵泰儀, 石岩, 等. 摇摆-自复位桥墩抗震性能数值建模方法研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1357-1369.
Sun Zhi-guo, Zhao Tai-yi, Shi Yan, et al. Research on numerical modeling method for rocking self-centering bridge piers[J]. Journal of Basic Science And Engineering, 2019, 27(6): 1357-1369.
78 樊晓伟. 新型预压弹簧自恢复耗能支撑结构抗震性能设计理论与试验研究[D]. 北京: 北京交通大学土木建筑工程学院, 2019.
Fan Xiao-wei. Theoretical and experimental research on seismic performance design of buildings with pre-pressed spring self-centering energy dissipation braces[D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2019.
79 徐龙河, 孙雨生, 要世乾, 等. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127, 146.
Xu Long-he, Sun Yu-sheng, Yao Shi-qian, et al. restoring force model and experimental verification of an assembled self-centering energy dissipation brace[J]. Engineering Mechanics, 2019, 36(6): 119-127, 146.
80 Xu L H, Jiang H, Xie X S, et al. Modeling of disc spring self-centering energy dissipation braces from inactive state to design limit state[J]. Journal of Engineering Mechanics, 2021, 147(10): No.04021077.
81 Wang X W, Shafieezadeh A, Ye A J. Optimal EDPs for post-earthquake damage assessment of extended pile-shaft-supported bridges subjected to transverse spreading[J]. Earthquake Spectra, 2019, 35(3): 1367-1396.
82 周雨龙, 韩强, 张劲泉, 等. 消能自复位摇摆框架墩结构地震反应及易损性分析[J]. 中国公路学报, 2021, 34(11): 153-164.
Zhou Yu-long, Han Qiang, Zhang Jin-quan, et al. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers[J]. China Journal of Highway and Transport, 2021, 34(11): 153-164.
83 王军文, 张伟光, 李建中. 摇摆式预应力混凝土桥墩基于位移的抗震设计方法研究[J]. 振动与冲击, 2014, 33(24): 106-111.
Wang Jun-wen, Zhang Wei-guang, Li Jian-zhong. Displacement-based aseismic design method for rocking bridge piers with posttensioned tendons[J]. Journal of Vibration and Shock, 2014, 33(24): 106-111.
84 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169-177.
Han Qiang, Jia Zhen-lei, He Wei-li, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12): 169-177.
85 董慧慧. 自复位耗能支撑桥梁结构体系及其性能抗震设计方法[D]. 北京: 北京工业大学建筑工程学院, 2018.
Dong Hui-hui. Seismic performance and design method of bridges with SCEBS[D]. Beijing: College of Architecture and Civil Engineering, Beijing University of Technology, 2018.
[1] 邸振勇,杨新辉,林霄. 基于荷载⁃位移滞回曲线的建筑双梁⁃柱节点抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(7): 2061-2066.
[2] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[3] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[4] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
[5] 张阳,王傲鹏,张靖霖,马涛,陈思宇. 水泥稳定碎石材料干燥收缩研究综述[J]. 吉林大学学报(工学版), 2023, 53(2): 297-311.
[6] 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495.
[7] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[8] 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816.
[9] 顾章义,张治成,李辉. 基于能量法的超高韧性纤维混凝土疲劳损伤特性[J]. 吉林大学学报(工学版), 2022, 52(7): 1598-1606.
[10] 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873.
[11] 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652.
[12] 于开锋,何小玲,李俊涛,梁策. 玄武岩纤维对不饱和聚酯树脂复合材料的增韧[J]. 吉林大学学报(工学版), 2022, 52(10): 2300-2306.
[13] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[14] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[15] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!