Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1582-1592.doi: 10.13229/j.cnki.jdxbgxb.20220888
Pei-guang JING1(),Yu-dou TIAN1,Shao-chu WANG2,Yun LI3(),Yu-ting SU1
CLC Number:
1 | Li Y G, Shahabi C. A brief overview of machine learning methods for short-term traffic forecasting and future directions[J]. Sigspatial Special, 2018, 10(1): 3-9. |
2 | Vlahogianni E I, Karlaftis M G, Golias J C. Short-term traffic forecasting: where we are and where we're going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19. |
3 | Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C, 2002, 10(4): 303-321. |
4 | Zivot E, Wang J H. Vector autoregressive models for multivariate time series[EB/OL]. [2022-07-02]. |
5 | Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. |
6 | Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281. |
7 | Lint H V, Hinsbergen C V. Short-term traffic and travel time prediction models[J]. Transportation Research Circular, 2012, 22(1): 22-41. |
8 | Yao H X, Wu F, Ke J T, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]∥International Conference on Artificial Intelligence, New Orleans, LA, USA, 2018, 32: 2588-2595. |
9 | Zhang C Y, Paul P. Long-term mobile traffic forecasting using deep spatio-temporal neural networks[C]∥International Symposium on Mobile Ad Hoc Networking and Computing, LA, USA, 2018, 231-240. |
10 | Guo S N, Lin Y F, Li S J, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. |
11 | 苏育挺,王骥,赵玮,等.基于动态图卷积的图像情感分布预测[J].吉林大学学报: 工学版,2023,53(9):2601-2610. |
Su Yu-ting, Wang Ji, Zhao Wei, et al. Image sentiment distribution prediction based on dynamic graph convolution[J]. Journal of Jilin University (Engineering Edition), 2023, 53(9): 2601-2610. | |
12 | Li Y G, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]∥International Conference on Learning Representations, Vancouver, Canada, 2018: 1-16. |
13 | Guo S N, Lin Y F, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]∥International Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019, 33(1): 922-929. |
14 | Zhao L, Song Y J, Zhang C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. |
15 | Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]∥International Conference on Neural Information Processing Systems, Virtual, 2020, 33: 17804-17815. |
16 | Wu Z H, Pan S R, Long G D, et al. Graph wavenet for deep spatial-temporal graph modeling[C]∥International Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019: 1907-1913. |
17 | Li Z M, Lai D R. Dynamic network embedding via temporal path adjacency matrix factorization[C]∥International Conference on Information & Knowledge Management, Atlanta, GA, USA, 2022: 1219-1228. |
18 | Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation[C]∥International Conference on Empirical Methods in Natural Language Processing, Columbia, Maryland, USA, 2014: 1724-1734. |
19 | Shuman D I, Narang S K, Frossard P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE signal processing magazine, 2013, 30(3): 83-98. |
20 | Chen P, Sun Z Q, Bing L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]∥International Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 452-461. |
21 | Chen J Y, Wang X K, Xu X H. Gc-lstm: graph convolution embedded lstm for dynamic link prediction[DB/OL]. [2022-07-02]. |
22 | Si C Y, Chen W H, Wang W, et al. An attention enhanced graph convolutional lstm network for skeleton-based action recognition[C]∥International Conference on Computer Vision and Pattern Recognition, Long Beach, California, USA, 2019: 1227-1236. |
23 | Fang Z, Long Q Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]∥ International Conference on Knowledge Discovery & Data Mining, Virtual, 2021: 364-373. |
24 | Choi J, Choi H, Hwang J, et al. Graph neural controlled differential equations for traffic forecasting[C]∥International Conference on Artificial Intelligence, Wien, Vienna, Austria, 2022, 36(6): 6367-6374. |
25 | Liu M H, Zeng A, Xu Z, et al. Time series is a special sequence: forecasting with sample convolution and interaction[C]∥International Conference on Neural Information Processing Systems, Orleans, Louisiana, USA, 2022: 1-18. |
[1] | Fu-heng QU,Yue-tao PAN,Yong YANG,Ya-ting HU,Jian-fei SONG,Cheng-yu WEI. An efficient global K-means clustering algorithm based on weighted space partitioning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1393-1400. |
[2] | Shuai-shuai SUN,Chun-xiao FENG,Liang ZHANG. Path planning for multimodal quadruped robots based on discrete sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1120-1128. |
[3] | Zhi-gang JIN,Ren-jun SU,Xiao-fang ZHAO. Psychological assessment method based on heterogeneous graph network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1078-1085. |
[4] | Jing-peng GAO,Guo-xuan WANG,Lu GAO. LSTM⁃MADDPG multi⁃agent cooperative decision algorithm based on asynchronous collaborative update [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 797-806. |
[5] | Liu LIU,Kun DING,Shan-shan LIU,Ming LIU. Event detection method as machine reading comprehension [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 533-539. |
[6] | Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
[7] | Jian LI,Qi XIONG,Ya-ting HU,Kong-yu LIU. Chinese named entity recognition method based on Transformer and hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1427-1434. |
[8] | Hui-zhen ZHANG,Zheng-kai GAO,Jian-qiang LI,Chen-xi WANG,Yu-biao PAN,Cheng WANG,Jing WANG. Short⁃term passenger flow forecasting of urban rail transit based on recurrent neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 430-438. |
[9] | Chun-hui LIU,Si-chang WANG,Ce ZHENG,Xiu-lian CHEN,Chun-lei HAO. Obstacle avoidance planning algorithm for indoor navigation robot based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3558-3564. |
[10] | Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880. |
[11] | Sheng-sheng WANG,Lin-yan JIANG,Yong-bo YANG. Transfer learning of medical image segmentation based on optimal transport feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1626-1638. |
[12] | Hao-yu TIAN,Xin MA,Yi-bin LI. Skeleton-based abnormal gait recognition: a survey [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 725-737. |
[13] | Yong LIU,Lei XU,Chu-han ZHANG. Deep reinforcement learning model for text games [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 666-674. |
[14] | Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376. |
[15] | Zhi-hua LI,Ye-chao ZHANG,Guo-hua ZHAN. Realtime mosaic and visualization of 3D underwater acoustic seabed topography [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 180-186. |
|