作者简介:赵丹(1983-),女,博士研究生.研究方向:城市交通规划与管理.E-mail:08114188@bjtu.edu.cn
为了评价多方式诱导信息对综合交通网络中交通流分配的影响,通过构建基于出行链的概率型随机用户平衡模型,并设计内嵌Monte-Carlo模拟的MSA求解算法,研究多方式诱导下组合出行方式选择、出行链费用和出行链结构的变化。求解过程中,引入超级网络理论,并基于超级网络进行流量分配。研究结果表明:多方式诱导信息使公共交通模式分担率增加5.63%,得到网络总收益为196.254,说明多方式诱导信息对引导出行者减少使用小汽车有显著效果,也有助于降低出行链费用,简化出行链结构。
In order to evaluate the impact of multi-modal guidance information on the traffic assignment in the integrated transportation network, a trip-chain-based probit stochastic user equilibrium model was proposed to study the variations of travelers' choice of combined trip mode, trip-chain cost and trip-chain structure under the multi-modal guidance. A MSA algorithm with Monte-Carlo method embedded was presented to solve the model. In the model, travelers were divided into two groups by accepting multi-modal guidance information or not, and both groups make choices according to their own expected cost of trip chains. In the course of solution, hyper-network theory was introduced, and traffic flow assignment was carried out on the hyper-network. The results show that multi-modal guidance information helps to increase the mode split rate of public transport by 5.63%, and the network benefit reach 196.254. It can be confirmed that multi-modal guidance information contributes to encourage travelers to decrease the use of car, and reduce trip-chain cost and simplify trip-chain structure.
国内外很多学者利用交通流分配模型研究交通信息的市场占有率、信息质量对出行行为及交通系统性能的影响, 研究表明:路网的不确定性导致了出行的延误成本[1, 2], 而信息服务对交通系统产生了正向影响[3, 4], 即随着信息的准确度和信息使用比例的在一定范围内的提高, 出行的不确定性降低, 交通系统的费用逐渐降低[5, 6]。但是, 上述研究中的交通信息多指道路交通流信息, 较少涉及公共交通信息领域; 并且是仅从单次出行的角度分析交通流分配情况及信息产生的影响[7, 8]。而实际出行中, 前次的出行和与之相连的下一次出行具有时间和空间上的承接关系, 前次出行的时间和目的地决定了下一次出行的出发时刻和路径选择, 仅研究交通信息对单次出行的影响是不全面的。因此, 有学者提出了基于出行链的交通分配模型, 如张伟华等[9]提出了基于出行链的弹性需求随机网络配流模型, Higuchi等[10]则建立了考虑共线性的多方式出行链交通分配模型。但是, 这些文献都没有考虑交通信息的影响, 将出行链交通分配模型与交通信息相结合的研究十分稀少。
本文在一种假设的“ 多方式诱导” 背景下, 从出行链的角度出发, 将出行者分为接受和不接受多方式诱导信息两类, 两类出行者根据各自对出行链的感知费用实现其选择行为, 通过建立随机用户平衡模型研究多方式诱导信息对综合交通网络中交通流分配的影响, 并分析出行者交通模式和出行链发生的变化。
多方式诱导中“ 方式” 不仅指信息服务的媒介, 也暗含与多种交通方式相关的含义。总体上, 希望多方式诱导信息可以使出行链的全过程能够接受相关信息的辅助, 提高出行者选择方式、路径的正确率, 实现其出行费用的最小化。
建立有向图G=(N, A)表示交通网络, 其中, N为节点集合, A为路段集合。定义a表示路段, a∈ A; ni 为驻点; 出行链记为c, c∈ C, C为可选出行链集合; ls 为连接出行链c中所有驻点的第s条可行路径, ls∈ Ω 。网络中存在三种交通工具, 记为R={auto, bus, metro}, 即小汽车、公交车和地铁, 三者组成五种交通方式, 记交通方式集合为{m|m=1, 2, 3, 4, 5}, 分别表示小汽车、公交车、地铁、公交车换乘地铁和小汽车换乘地铁。五种交通方式构成了三种交通模式:私人交通、公共交通和私人交通换乘公共交通(Park and Ride, 简称P+R换乘), m=1代表私人交通模型, m=2、3、4构成公共交通模式, m=5代表P+R换乘模式。
本文假设“ 多方式诱导” 提供三类信息:道路路段行程时间, 停车设施泊位情况, 公共交通工具等待时间, 其传播媒介包括交通广播、网络、车载导航、路侧信息提示屏、公交系统内部的视频装置等, 因此认为信息使用者占总体的比例(即信息的市场占有率)较高。分析出行链费用时, 主要基于以下假设:
(1)出行者可选交通方式齐全, 不考虑因受交通方式限制而导致只能选择某种交通工具的情况。
(2)出行者分为接受和不接受多方式诱导信息两类, 他们对路段
出行链可定义为由一系列驻点(指停留某处进行活动的地点)和路段构成的出行集合[11]。一般, 采用交通方式为
式中:
出行链总费用中的确定项
式中:
其中, 小汽车和公交车在路段
令
令
根据式(2)中出行链总费用确定项的组成情况, 认为随机项
(1)对出行链行程时间
(2)使用小汽车出行时, 对停车泊位寻找时间
(3)使用公交车或地铁出行时, 对等车时间
由于
式中:当出行链路径
多方式诱导信息条件下, 出行者总是选择总费用最小的出行链, 依据随机用户平衡(Stochastic user equilibrium, SUE)的原理, 设
设具有出行链
式(12)(13)(14)中:
多方式诱导信息的市场占有率
式中:
根据市场占有率计算两类出行者的出行链流量, 如式(16)所示:
根据Sheffi和Powell[14]提出的与随机用户平衡等价极小值问题, 建立Probit型路径选择的出行链随机用户平衡数学规划模型, 如式(17)所示:
式中:
经证明, 式(17)与出行链随机用户平衡条件等价, 具体推导过程可参考文献[14]。
连续平均法(Method of successive averages, MSA)是求解SUE问题的最有效算法之一。当MSA用于概率型的(Probit型)SUE问题时, 需进行双层迭代:一是内部“ 抽样/配流” 迭代; 二是外部平衡迭代。其中, 内部迭代通常采用Monte-Carlo模拟算法。本文设计的求解式(17)的算法步骤为:
(1)初始化。设定市场占有率初值
(2)更新出行链费用函数, 执行流量随机分配。确定各路段和节点的费用项, 如
(3)更新流量。
(4)收敛性检查。若满足收敛指标式(19), 则停止计算; 否则, 令
式中:不等式左侧称为误差函数,
建立如图1所示的简化抽象综合交通网络, 表示从家出发依次经过驻点
由于图1省略了进出交通网络的路段, 所以定义驻点属性时考虑了公交车、地铁的等车时间和小汽车泊位寻找时间的相关参数, 如表2和表3所示。
为了求解多方式交通流在网络中的分配情况, 通过增设虚拟节点和虚拟路段, 将小汽车和公交车分离, 建立超级网络。算例中流量加载和分配均基于超级网络进行。以在图1中“ 家→ 驻点n1” 所包含的路径和交通方式为例, 构造图2所示超级网络, 其他同理。图2中, 虚拟路段费用为0, 虚拟节点的参数与其对应的实际节点参数取值一致, 根据其所在线路的交通方式参照表2和表3进行定义。
算例中, 设地铁票价为均一价2元, 公交车单位距离票价为阶段计价每10 km0.4元, 停车费见表3。其他参数取值分别为:
图3给出了算法的收敛性能。算法采用单步长迭代, 经过500多次迭代达到收敛标准。收敛时, 多方式诱导信息的市场占有率为31.17%。
表4给出了均衡状态下, 接受和不接受多方式诱导信息的出行链流量分配结果, 以及5种交通方式的分担比例。可以看出, 无论是否接受多方式诱导信息, 使用小汽车完成出行链的交通方式划分率均为最高, 占总体的34.02%。比较两类出行者的选择情况, 发现接受多方式诱导信息的出行者更倾向于选择公共交通, 使用地铁和公交换乘地铁完成出行链的比例分别增加了6.35%和6.81%, 而小汽车、公交车和小汽车换乘地铁出行链的比例有所降低, 降低幅度分别为3.56%、7.53%和2.07%; 并且, 包含小汽车交通方式的私人交通模式和P+R换乘模式的分担率共下降5.63%, 而公共交通模式分担率则相应增加了5.63%, 说明多方式诱导信息可以促使出行者减少对小汽车的使用, 对引导私人交通转向公共交通有积极作用。
表5列出了均衡状态下, 两类出行者的出行链平均费用差异。表5中的数值为每种交通方式对应的所有出行链路径费用的平均值。由表5可以看出, 接受多方式诱导信息后, 5种交通方式的出行链平均费用全部降低; 其中, 公交车出行链取得的收益最大, 达到0.067, 地铁出行链收益最小。原因在于:公交车的行程时间、等待时间等因素的不确定性最大, 不接受多方式诱导信息的出行者对上述因素的感知误差均大于其他交通方式。用每种交通方式的出行链费用平均收益乘以每种交通方式的流量分配结果(见表4), 得到网络总收益为196.254。
表6列出了均衡状态下, 两类出行者的出行链结构特性差异。可以看出, 多方式诱导下, 包含驻点n1的出行链比例下降13.25%, 说明多方式诱导信息服务有助于简化出行链结构, 从而通过减少出行链中的出行次数, 取得减少出行总量的效果。
在多方式诱导的背景下, 从出行链的角度分析费用构成, 考虑出行者对不同类型和不同交通方式相关信息的感知误差, 建立基于Probit加载的随机用户平衡模型, 并运用内嵌蒙特卡洛(Monte-Carlo)模拟的MSA算法求解, 分析了多方式诱导信息对出行模式、出行链费用和出行链结构的影响。算例结果表明:多方式诱导信息服务有助于引导出行者减少对小汽车的使用, 并从私人交通转向公共交通模式; 出行者接受多方式诱导信息后, 各种交通方式的出行链平均费用全部降低, 网络总费用也随之下降; 并且, 接受多方式诱导信息的出行者更倾向于简化其出行链结构, 说明信息服务可以取得减少出行总量的效果。本文的一些参数是根据其他相关研究进行标定的, 对于实际的交通网络, 要根据实际数据标定参数。并且, 本文没有考虑小汽车与公交线路之间的影响, 今后的研究会将这一问题考虑在内。
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|