吉林大学学报(地球科学版)

• 地球探测与信息技术 • 上一篇    

两种被动微波遥感混合像元分解方法比较

顾玲嘉1, 赵凯2,任瑞治1,孙健1,2   

  1. 1.吉林大学电子科学与工程学院,长春130012;
    2.中国科学院东北地理与农业生态研究所,长春130012
  • 收稿日期:2013-04-27 出版日期:2013-11-26 发布日期:2013-11-26
  • 作者简介:顾玲嘉(1981-),女,副教授,主要从事卫星遥感数据处理及应用,E-mail:gulingjia@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(41101419);吉林省科技发展计划项目(201201050);中国科学院知识创新工程重要方向项目(KZCX2-YW-340)

Comparsion of Two Passive Microwave Unmixing Methods

Gu Lingjia1, Zhao Kai2, Ren Ruizhi1, Sun Jian1,2   

  1. 1.College of Electronic Science & Engineering, Jilin University, Changchun130012, China;
    2.Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130012, China
  • Received:2013-04-27 Online:2013-11-26 Published:2013-11-26

摘要:

被动微波遥感混合像元分解是成功应用被动微波辐射计数据的关键,研究被动微波遥感混合像元分解方法具有重要的应用意义。提出基于地物分类信息的被动微波混合像元分解方法,通过模拟具有不同组分亮温分布的观测地区,将其与具有代表性的Bellerby提出的被动微波混合像元分解方法进行对比研究,分析两种分解方法的适用范围及影响其求解精度的主要因素。Bellerby的方法适合于观测地区中陆地组分亮温不变的情况,当观测地区陆地组分亮温发生变化时,笔者提出的方法能得到更加准确的分解结果。研究结果表明:笔者提出的方法进行混合像元分解后,其陆地组分亮温误差的平均值约为 0.1 K,水体组分亮温误差的平均值约为0.2 K;而采用Bellerby方法计算得到陆地组分亮温误差的平均值约为3.1 K,水体组分亮温误差的平均值约为5.9 K。

关键词: 像处理, 组分亮温, 被动微波遥感数据, 误差分析, 混合像元分解

Abstract:

Passive microwave unmixing methods are very important for successful applications of passive microwave radiometer data. We proposed a passive microwave unmixing method based on land surface classification information. Through designing the simulation study areas with the component brightness temperature distributions based on different land surface types, we compared the proposed method with the method introduced by Bellerby. Furthermore, the two unmixing methods were evaluated and the main factors affecting the unmixing result were analyzed. Bellerby’s method is more suitable for the observation area where the land component brightness temperature was stable. When obvious change of the land component brightness temperature occurs in the observation area, the proposed method can obtain more high precision unmixing results. The research results demonstrated that the accuracy of the component brightness temperature using the proposed method was better than that using the Bellerby’s method. The precision of land component brightness temperature and water brightness temperature using the proposed method is approximately 0.1 K and 0.2 K respectively, while that using the Bellerby’s method is approximately 3.1 K and 5.9 K respectively.

Key words: image processing, component brightness temperature, passive microwave remote sensing data, error analysis, unmixing method

中图分类号: 

  • TP75
[1] 张兆辉, 刘化清, 苏明军. 基于地层切片的小尺度沉积相定量解释方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 893-899.
[2] 余先川,周鑫,康增基,安卫杰,胡丹,王云涛,韦京莲,刘连刚. 一种基于多特征波段岩土层次分类方法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1825-1833.
[3] 韩复兴, 孙建国, 王坤. 速度模型的光滑处理分析[J]. J4, 2011, 41(5): 1610-1616.
[4] 叶润青, 牛瑞卿, 张良培. 基于多尺度分割的岩石图像矿物特征提取及分析[J]. J4, 2011, 41(4): 1253-1261.
[5] 杨日红,王治华,贾韶辉,陆瑜瑜. 数字遥感技术在宣汉县天台乡滑坡研究中的应用[J]. J4, 2007, 37(3): 557-0563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!