吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 255-264.doi: 10.13278/j.cnki.jjuese.201501208

• 地质工程与环境工程 • 上一篇    下一篇

天津围海造陆区吹填土氮磷的分布特征

赵林, 郑义, 毛国柱, 郭华   

  1. 天津大学环境科学与工程学院, 天津 300072
  • 收稿日期:2014-07-16 发布日期:2015-01-26
  • 作者简介:赵林(1961), 男, 教授, 博士, 主要从事污染环境生态修复方面的研究, E-mail:zhaolin@tju.edu.cn
  • 基金资助:

    国家科技支撑计划课题(2012BAC07B02);水利工程仿真与安全国家重点实验室项目(201304)

Spatial Distribution of Nitrogen and Phosphorus in Dredger Fill at Tianjin Reclamation Land Area

Zhao Lin, Zheng Yi, Mao Guozhu, Guo Hua   

  1. School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2014-07-16 Published:2015-01-26

摘要:

天津临港经济区地处滨海, 完全是由填海造陆形成的人工陆地。土壤是港口航道清淤淤泥、近海海沙吹填围海造陆后形成的吹填土, 其性质特殊, 研究吹填土壤中氮磷空间分布对了解该区域环境状况有重要意义。研究发现:天津临港吹填土整体含氮量较低, 按土层深度分布, 平均质量分数为161.73~240.09 mg/kg;含磷量相对丰富, 平均质量分数为355.54~443.27 mg/kg;总氮变异系数较大, 总磷变异系数较小, 氮、磷质量分数主要受不同区域吹填土性质影响。吹填土中有机磷质量分数较少, 平均仅占总磷的3.83%, 吹填土中磷大多以无机磷形式存在, 其相对质量分数从大到小为:钙结合磷(Ca-P) >铁结合磷(Fe-P) >铝结合磷(Al-P) >闭蓄态磷(Oc-P) >碎屑磷(De-P) >交换态磷(Ex-P)。研究表明, 临港吹填土氮、磷质量分数水平对近海环境有潜在富营养污染威胁。

关键词: 吹填土, 总氮, 总磷, 磷形态, 分布特征, 天津临港

Abstract:

Tianjin Lingang Economic Area is located in the coastal region which is formed by land reclamation. The soil is dredger fill formed by silt and sand. The characteristics, spatial distribution of nitrogen and phosphorus in the dredger fill of Tianjin Lingang Area is important information for figuring out the eutrophication of the region. Nitrogen and phosphorus contents were measured using the samples collected from the dredger fill of Lingang. The results indicated that soil nitrogen content in Lingang Economic Area was quite low, which was 161.73-240.09 mg/kg in average. However, the phosphorus content was relatively rich among 355.54 and 443.27 mg/kg. The horizontal variation coefficient of total nitrogen distribution was greater than the total phosphorus. The nitrogen and phosphorus contents of dredger fill in different regions were related to the characteristics itself. Dredger fill in part of the region was resulted by artificial interferences, which caused the increments of nitrogen and phosphorus contents. Predictable, the level of nitrogen and phosphorus contents may bring eutrophication to the coastal environment near Lingang.

Key words: dredger fill, total nitrogen, total phosphorus, phosphorus forms, distribution characteristic, Lingang, Tianjin

中图分类号: 

  • X53

[1] 彭涛, 武威, 黄少康, 等. 吹填淤泥的工程地质特性研究[J]. 工程勘察, 1999, 5(1):5. Peng Tao, Wu Wei, Huang Shaokang, et al. Research on Engineering Geologic Properties of Blown Filled Muck[J]. Geotechnical Investigation & Surveying, 1999, 5(1):5.

[2] 金慧龙, 李裕元, 高茹, 等. 亚热带小流域土壤氮磷分布及其环境效应[J]. 水土保持学报, 2012, 26(3):123-126. Jin Huilong, Li Yuyuan, Gao Ru, et al. Distribution of Soil Nitrogen, Phosphorus and Its Environmental Effects in a Small Subtropical Watershed[J]. Journal of Soil and Water Conservation, 2012, 26(3):123-126.

[3] 聂红涛, 陶建华. 渤海湾海岸带开发对近海水环境影响分析[J]. 海洋工程, 2008, 26(3):44-50. Nie Hongtao, Tao Jianhua. Impact of Coastal Exploitation on the Eco-Environment of Bohai Bay[J]. The Ocean Engineering, 2008, 26(3):44-50.

[4] 郭鑫. 人工岸带海陆水交换过程中污染物的迁移规律研究[D]. 天津:天津大学, 2012. Guo Xin. Investigation of Contaminant Migration During the Related Function Between Salt Water and Groundwater on the Artificial Shore[D].Tianjin:Tianjin University, 2012.

[5] 王骥, 张兰英, 卢少勇, 等. 再力花/菖蒲生物湿地床去除河水中氮磷的试验[J]. 吉林大学学报:地球科学版, 2012, 42(增刊):408-414. Wang Ji, Zhang Lanying, Lu Shaoyong. et al. Removal of N and P from River Water Treated by the Bio-Rack Wetland Planted with Thalia Dealbata and Acorus Calamus Linn[J]. Journal of Jilin University:Earth Science Edition, 2012, 42 (Sup.):408-414.

[6] Brinkman A G.A Double-Layer Model for Ion Adsor-ption onto Metal Oxides, Applied to Experimental Data and to Natural Sediments of Lake Veluwe, the Netherlands[J]. Hydrobiologia, 1993, 253(1/2/3):31-45.

[7] GBJ145-90 土的分类标准[S]. 北京:中华人民共和国水利部, 1990. GBJ145-90 Classification of Soil[S]. Beijing:Ministry of Water Resources of the People's Republic of China, 1990.

[8] Nielsen J D. Fixation and Release of Potassium and Ammonium Ions in Danish Soils[J]. Plant and Soil, 1972, 36:71-88.

[9] Peng J, Wang B, Song Y, et al. Adsorption and Release of Phosphorus in the Surface Sediment of a Wastewater Stabilization Pond[J]. Ecological Engineering, 2007, 31(2):92-97.

[10] Kastelan-Macan M, Petrovic M. The Role of Fulvic Acids in Phosphorus Sorption and Release from Mineral Particles[J]. Water Science and Technology, 1996, 34(7):259-265.

[11] 江辉煌, 刘素美. 渤海沉积物中磷的分布与埋藏通量[J]. 环境科学学报, 2013, 33(1):125-132. Jiang Huihuang, Liu Sumei. Distribution and Burial Flux of Phosphorus in Sediments of the Bohai Sea[J]. Acta Scientiae Circumstantiae, 2013, 33(1):125-132.

[12] 吴光红, 李万庆, 郑洪起. 渤海天津近岸海域水污染特征分析[J]. 海洋学报, 2007, 29(2):143-149. Wu Guanghong, Li Wanqing, Zheng Hongqi. Water Pollution Characteristics in Tianjin Sea Area of the Chinese Bohai Bay[J]. Acta Oceanologica Sinica, 2007, 29(2):143-149.

[13] Shao X, Chang T, Cai F, et al. Effects of Subsurface Drainage Design on Soil Desalination in Coastal Resort of China[J]. Journal of Food, Agriculture & Environment, 2012, 10(2):935-938.

[14] Diebel M W, Maxted J T, Robertson D M, et al. Landscape Planning for Agricultural Nonpoint Source Pollution Reduction:Ⅲ:Assessing Phosphorus and Sediment Reduction Potential[J]. Environmental Management, 2009, 43(1):69-83.

[15] McDowell R W, Sharpley A N. Variation of Phosphorus Leached from Pennsylvanian Soils Amended with Manures, Composts or Inorganic Fertilizer[J]. Agriculture, Ecosystems & Environment, 2004, 102(1):17-27.

[16] Psenner R, Bostrm B, Dinka M, et al. Fractionation of Phosphorus in Suspended Matter and Sediment[J]. Arch Hydrobiol Beih Ergebn Limnol, 1988, 30:98-103.

[17] Kaiserli A, Voutsa D, Samara C. Phosphorus Fractionation in Lake Sediments-Lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8):1147-1155.

[18] Turner B L, Newman S. Phosphorus Cycling in Wetland Soils[J]. Journal of Environmental Quality, 2005, 34(5):1921-1929.

[19] Richardson A E, Simpson R J. Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus[J]. Plant Physiology, 2011, 156(3):989-996.

[20] Gerke J, Hermann R. Adsorption of Orthophosphate to Humic-Fe-Complexes and to Amorphous Fe-Oxide[J]. Journal of Plant Nutrition and Soil Science, 2007, 155(3):233-236.

[21] 胡斌, 和树庄, 陈春瑜, 等. 滇池流域土壤氮磷分布特征及关键影响因素研究[J]. 土壤学报, 2012(6):1178-1184. Hu Bin, He Shuzhuang, Chen Chunyu, et al. Distributions of Soil Nitrogen and Phosphorus in Dianchi Watershed and Their Key Influencing Factors[J]. Acta Pedologica Sinica, 2012(6):1178-1184.

[22] 秦延文, 孟伟, 郑丙辉, 等. 渤海湾水环境氮、磷营养盐分布特点[J]. 海洋学报, 2005, 27(2):172-176. Qin Yanwen, Meng Wei, Zheng Binghui, et al. Distribution Features of Nitrogen and Phosphorus in Aquatic Environments of the Bohai Gulf[J]. Acta Oceanologica Sinica, 2005, 27(2):172-176.

[23] 赵林, 方东明, 宋伟男, 等. 海河干流表层沉积物中磷形态的空间分布特征及其对水相磷的影响[J]. 吉林大学学报:地球科学版, 2014, 44(2):603-609. Zhao Lin, Fang Dongming, Song Weinan, et al. Spatial Distribution of Phosphorus Fractions in Surface Sediments and Its Impact on Soluble Phosphorus in Mainstream of Haihe River[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(2):603-609.

[24] 岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J]. 海洋与湖沼, 2007, 38(2):111-117. Yue Weizhong, Huang Xiaoping, Sun Cuici. Distribution and Pollution of Nitrogen and Phosphorus in Surface Sediments from the Pearl River Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(2):111-117.

[25] 李任伟, 李禾, 李原, 等. 黄河三角洲沉积物重金属, 氮和磷污染研究[J]. 沉积学报, 2001, 19(4):622-629. Li Renwei, Li He, Li Yuan, et al. Study of the Heavy Metals, Nitrogen and Phosphorus Contaminants in the Sediments of the Yellow River Delta[J]. Acta Sedimentologica Sinica, 2001, 19(4):622-629.

[26] 李凤业, 史玉兰. 渤海南部现代沉积物堆积速率和沉积环境[J]. 黄渤海海洋, 1995, 13(2):33-37. Li Fengye, Shi Yulan. Accumulation Rates of Sediment and Sedimentary Environment in the South Bohai Sea[J]. Journal of Oceanograpgy of Huanghai & Bohai Seas, 1995, 13(2):33-37.

[27] Li Yue, Yu Jijin. Geochemical Characteristics of Phosphorus near the Huanghe River Estuary[J]. Chinese Journal of Oceanology and Limnology, 1999, 17(4):359-365.

[28] Liu S M, Zhang J, Li D J. Phosphorus Cycling in Sediments of the Bohai and Yellow Seas[J]. Estuarine, Coastal and Shelf Science, 2004, 59(2):209-218.

[29] Hou L J, Lu J J, Liu M, et al.Species and Bioavai-lability of Phosphorus in Surface Sediments from the Shoals in the Yangtze Estuary[J]. Acta Scientiae Circumstantiae, 2006, 26(3):488-494.

[1] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[2] 雷华阳, 王铁英, 张志鹏, 卢海滨, 刘敏. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784-1794.
[3] 袁利娟, 杨峰田. 北京迭断陷内蓟县系热储层温度分布特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 179-188.
[4] 蒙启安,刘一丹,吴海波,李军辉,刘赫. 海拉尔-塔木察格盆地中部断陷带油气形成条件及富集规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1737-1746.
[5] 徐国策,李占斌,李鹏,赵宾华,王琦,惠波. 丹江鹦鹉沟小流域氮素随径流的迁移及对水质的影响[J]. 吉林大学学报(地球科学版), 2014, 44(2): 645-652.
[6] 佴磊, 苏占东, 徐丽娜, 杨旭然. 中国主要沼泽草炭土的形成环境及分布特征[J]. J4, 2012, 42(5): 1477-1484.
[7] 汤洁, 杨巍, 李昭阳, 卞建民, 刘畅. 辽河大伙房水库汇水区农业非点源污染入库模拟[J]. J4, 2012, 42(5): 1462-1468.
[8] 苑晓青, 王清, 孙铁, 夏玉斌, 陈慧娥, 宋晶. 分级真空预压法加固吹填土过程中孔隙分布特征[J]. J4, 2012, 42(1): 169-176.
[9] 宋晶, 王清, 夏玉斌, 陈允进, 陈慧娥, 苑晓青. 真空预压处理高黏粒吹填土的物理化学指标[J]. J4, 2011, 41(5): 1476-1480.
[10] 牛岑岑, 王清, 苑晓青, 杨静, 宋晶, 王吉亮. 渗流作用下吹填土微观结构特征定量化研究[J]. J4, 2011, 41(4): 1104-1109.
[11] 张中琼, 王清, 秦炎, 陈慧娥, 李晓茹, 宋晶. 快速加固吹填土的室内模拟试验[J]. J4, 2010, 40(3): 645-650.
[12] 宋晶, 王清, 陈慧娥, 孙铁, 张中琼, 张鹏. 高粘性高盐量吹填土固结过程孔隙分维特征[J]. J4, 2010, 40(2): 361-367.
[13] 张永旺,曾溅辉,高 霞,周士赢. 东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素[J]. J4, 2009, 39(1): 16-0022.
[14] 温忠辉,王彬彬,鲁程鹏,颜陵翔,华骅. 南京市地下水资源开发利用分区[J]. J4, 2009, 39(1): 107-0113.
[15] 张新荣,胡 克,方 石,王东坡. 东北地区泥炭表层沉积中植硅体分布特征[J]. J4, 2007, 37(5): 895-0900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!