吉林大学学报(地球科学版)

• 地球探测与信息技术 • 上一篇    下一篇

基于贝叶斯理论的逐次迭代非线性AVA反演方法

代荣获,张繁昌,刘汉卿,李灿灿   

  1. 中国石油大学(华东)地球科学与技术学院,山东 青岛266580
  • 收稿日期:2014-04-10 出版日期:2014-11-26 发布日期:2014-11-26
  • 作者简介:代荣获(1990-),男,研究生,主要从事地球物理反演的研究,E-mail:daironghuo@yeah.net
  • 基金资助:

    国家自然科学基金项目(41374123);国家“973”计划项目(2013CB228604)

Non-Linear Pre-Stack Seismic AVA Inversion Based on Bayesian Theory Using Successive Iteration Method

Dai Ronghuo,Zhang Fanchang,Liu Hanqing,Li Cancan   

  1. School of Geosciences and Technology, China University of Petroleum, Qingdao266580, Shandong,China
  • Received:2014-04-10 Online:2014-11-26 Published:2014-11-26

摘要:

常规AVA三参数反演方法均基于横波速度与纵波速度之比γ为常数这一假设条件,且常被近似地取为0.5。然而在许多情况下γ并不为常数,而是在横向与纵向都渐变。若一概假定γ等于0.5,反演出的岩性参数势必要偏离真实值,因此有必要合理地选择γ。笔者基于贝叶斯理论,提出逐次迭代非线性AVA的反演方法。该方法把γ看成横向与纵向都渐变的反演初始背景,通过给定初始模型计算初始背景γ,并采用逐次迭代的策略求解该反演问题,解决了关于γ的选取问题以及由于引入变γ值而带来的非线性问题,提高了AVA三参数反演结果的精确度。

关键词: AVA反演, 非线性, 变纵横波速度比, 逐次迭代, 贝叶斯理论

Abstract:

Conventional three-term AVA inversion methods are based on the assumption that γ (the ratio of S-wave velocity to P-wave velocity) is a constant value usually considered to be 0.5, while γ is horizontally and vertically varied gradually in many cases. The estimated parameters of the inversion is bound to deviate from its true values with γ invariably being 0.5.  and the selection γ  needs to be reasonably. Based on Bayesian theory, we presents a nonlinear pre-stack seismic AVA inversion using successive iterative method, which considered the ratio’s initial background varying horizontally and vertically and being calculated by the-given initial model, and the nonlinear inversion problem was solved by successive iteration. The proposed method gived a reasonable solution for the selection of γ and solved the nonlinear problem caused by variable ratio γ . And the accuracy and stability of the three-term AVA inversion were improved.

Key words: AVA inversion, nonlinear problem, variable ratio of S-velocity to P-velocity, successive iteration, Bayesian theory

中图分类号: 

  • P631.4
[1] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[2] 张延庆,杨庆丽, 高向宇. 带有复合摩擦阻尼系统的基础隔震结构分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 908-913.
[3] 束龙仓, 荆艳东, 黄修东, 余钟波, 王振龙. 改进的无作物潜水蒸发经验公式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1859-1865.
[4] 刘佩贵, 陶月赞. 均衡法评价地下水可开采量的风险率[J]. J4, 2012, 42(4): 1125-1129.
[5] 张先伟, 王常明, 张淑华. 软土蠕变数据处理方法的对比分析[J]. J4, 2010, 40(6): 1401-1408.
[6] 张文春, 陈剑平, 张丽. 基于人工神经网络的三峡库区丰都县水库塌岸预测[J]. J4, 2010, 40(2): 378-382.
[7] 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088.
[8] 甘 杨,李 凡,李大华. 一维土层非线性地震反应分析的解析递推格式法[J]. J4, 2006, 36(04): 631-635.
[9] 吴亚东,赵文智,邹才能,李明,高建荣. 基于视速度的波场变换的叠前强相干噪音压制技术[J]. J4, 2006, 36(03): 462-467.
[10] 殷 文,印兴耀, 张繁昌. 基于并行遗传算法的地震属性优化研究[J]. J4, 2005, 35(05): 672-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!