吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1112-1120.doi: 10.13278/j.cnki.jjuese.201504114

• 地质与资源 • 上一篇    下一篇

浅议元素离子电位和丰度与巨型矿床的关系

赵博1,2, 王斌1, 石成龙1, 廖煜钟1, 赵欣1, 张涛1, 张德会1   

  1. 1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    2. 长安大学地质资源与地质工程, 西安 710064
  • 收稿日期:2014-11-02 发布日期:2015-07-26
  • 通讯作者: 张德会(1955),男,教授,博士生导师,主要从事成矿作用地球化学、应用地球化学及成矿作用动力学的教学和研究工作,E-mail:zhdehui@cugb.edu.cn. E-mail:zhdehui@cugb.edu.cn
  • 作者简介:赵博(1985),男,博士,主要从事地理信息系统与数学地质方面的研究,E-mail:xqshzylm@163.com
  • 基金资助:

    国土资源部公益性行业科研专项项目(201411024);国家自然科学基金项目(41373048)

Relationship Between Elemental Ionic Potential,Together with Elemental Abundance, and Giant Ore-Deposits

Zhao Bo1,2, Wang Bin1, Shi Chenglong1, Liao Yuzhong1, Zhao Xin1, Zhang Tao1, Zhang Dehui1   

  1. 1. School of Earth Science and Resource, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School Geology Engineering and Geomatics, Chang'an University, Xi'an 710064, China
  • Received:2014-11-02 Published:2015-07-26

摘要:

元素的质和量及其排列组合方式被认为是矿床形成的"基因".使用离子电位与克拉克值定量反映元素的质、量特征.成矿不外乎"源、运、储"三个环节,而离子电位通过控制金属"运"的行为影响其成矿能力,笔者给出了唯一的具有一定成因意义的元素离子电位,并发现离子电位与全球巨型矿床数目(n)、吨位堆积指数(TAI)可以拟合为一条向上开口的抛物线.克拉克值通过影响元素参与成岩-成矿过程的浓度继而支配着它们的地球化学行为,笔者证实了金属累积堆积量(m)与其丰度(c)呈线性相关,暗示某元素的高丰度可能意味着该元素的区域资源优势.

关键词: 离子电位, 克拉克值, 丰度, 吨位堆积指数, 巨型矿床, 相关关系

Abstract:

Both elemental quality and quantity as well as their way of permutation and combination are widely considered to be the "genes" of ore-deposits. Significantly, ionic potential and Clark value can represent the basic elemental geochemical attributes which can be divided into both of "quality" and "quantity". Thus, we studied the relationship between such two indivisible geochemical properties of ore-elements and the tonnage accumulation index (TAI) of giant ore-deposits. There are three critical steps to achieve the formation of ore-deposits; and they are material source, transportation, and preservation. In terms of its control ability to elemental behaviors of transportation (and/or preservation?), an ionic potential must exerts a striking influence on its elemental ore-forming ability; so does the Clark value in terms of its control of material source and of some geochemical behaviors that are sensitive to elemental abundance and strongly affect the concentration in those rock-and ore-forming processes. The available and unique value of ionic potential of some individual elements was worked out; and the mathematic relationship between the numbers of TAI of global giant ore-deposits and elemental ionic potentials was subsequently depicted, which appears as an opening-up parabola. Whereas, there is a rather clear linear relationship between metal resource reserves stored in giant and supergiant ore deposits all over the world and the elemental Clark values. So, a larger value of metal abundance indicatel its regional superiority of resources.

Key words: ionic potential, Clark value, abundance, TAI(tonnage accumulation index), giant ore-deposits, correlativity

中图分类号: 

  • P59

[1] 张德会, 赵仑山. 地球化学[M]. 北京: 地质出版社, 2013: 106-109. Zhang Dehui, Zhao Lunshan. Geochemistry[M].Beijing: Geological Publishing House, 2013: 106-109.

[2] Laznicka P. Giant Ore Deposits: A Quantitative Approach[J]. Global Tectonics and Metallogeny, 1999, 2(1/2): 41-64.

[3] Laznicka P. Giant Metallic Deposits: A Century of Progress[J]. Ore Geology Reviews, 2014, 62: 259-14.

[4] 张德会, 金旭东, 毛世德, 等.成矿热液分类兼论岩浆热液的成矿效率[J]. 地学前缘, 2011, 18(5): 90-102. Zhang Dehui, Jin Xudong, Mao Shide, et al. The Classification of Ore-Forming Fluid and the Efficiency of Ore Formation of Magmatic Hydrothermal Solution[J]. Earth Science Frontiers, 2011, 18(5): 90-102.

[5] 赵波, 张德会. 离子电位对金属元素迁移和成矿的影响[J]. 矿物岩石地球化学通报, 2013, 32(2):262-268. Zhao Bo, Zhang Dehui. Ionic Potential Impact on Migration and Metallization of Metal Elements[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2):262-268.

[6] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M].北京:科学出版社, 1984:5-303. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry[M]. Beijing: Science Press, 1984:5-303.

[7] 翟裕生. 矿床学[M]. 北京:地质出版社, 2010: 2-97. ZhaiYusheng. Metallogeny[M]. Beijing: Geological Publishing House,2010: 2-97.

[8] Railsback L B. An Earth Scientist's Periodic Table of the Elements and Their Ions[J]. Geology, 2003, 31(9): 737-740.

[9] Pirajno F. Hydrothermal Processes and Mineral Systems[M]. Berlin:Springer, 2008.

[10] 程裕淇, 王鸿祯. 地球科学大辞典[M]. 北京: 地质出版社, 2005. Cheng Yuqi, Wang Hongzhen. The Great Dictionary of Earth Sciences[M]. Beijing: Geological Publishing House, 2005.

[11] Mookherjee A, Panigrahi M K. Reserve Base in Relation to Crustal Abundance of Metals: Another Look[J]. Journal of Geochemical Exploration, 1994, 51: 1-9.

[12] 张德会, 龚庆杰.初论元素富集成矿的地球化学机理:以岩浆热液矿床的形成为例[J]. 地质地球化学, 2001, 29(3): 8-14. Zhang Dehui, Gong Qingjie. On the Geochemical Mechanisms of Enrichment and Ore Formation of Ore Metals[J]. Geology Geochemistry, 2001, 29(3): 8-14.

[13] Vigneresse J L.Chemical Reactivity Parameters (HSAB) Applied to Magma Evolution and Ore Formation[J]. Lithos, 2012, 153(15): 154-164.

[14] Barsukove V L, Durasova N A, Kovalenko N I, et al. Oxygen Fugacity and Tin Behavior in Metals and Fluids[J]. Geol,1987,38: 723-733.

[15] Art A,Migdisov A E,WilliamS J. An Experimental Study of Cassiterite Solubility in HCl-Bearing Water-Vapor at Temperatures up to 350℃: Implications for Tin Ore Formation[J].Chemical Geology,2005,217:29-40.

[16] Stemprok M, Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas[J].Mineral Deposita,1990, 25(3):205-212.

[17] Hu X, Bi X, Hu R, et al. Experimental Study on Tin Partition Between Granitic Silicate Melt and Coexisting Aqueous Fluid[J]. Geochemical Journal, 2008, 42(2): 141-150.

[18] Walshe J L M, Solomon D J Whitford.The Role of the Mantle in the Genesis of Tin Deposits and Tin Provinces of Eastern Australia, Society of Economic Geologists, Inc.Economic Geology,2001, 106:297-305.

[19] Kigai I N. Redox Problems in the "Metallogenic Specialization" of Magmatic Rocks and the Genesis of Hydrothermal Ore Mineralization[J]. Petrology, 2011, 19(3): 303-321.

[20] Holzheid A, Borisov A, Palme H. The Effect of Oxygen Fugacity and Temperature on Solubilities of Nickel, Cobalt, and Molybdenum in Silicate Melts[J]. Geochimicaet Cosmochimica Acta, 1994, 58(8): 1975-1981.

[21] Rempel K U, Migdisov A A, Williams J A E.The Solubility and Speciation of Molybdenum in Water Vapourat Elevated Temperatures and Pressures: Implications for Ore Genesis[J]. Geochimica et Cosmochimica Acta, 2008, 70(3): 687-96.

[22] 凌洪飞.论花岗岩型铀矿床热液来源:来自氧逸度条件的制约[J].地质论评, 2011, 57(2): 193-206. Ling Hongfei. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits:Constraints from Redox Conditions[J]. Geological Review, 2011, 57(2): 193-206.

[23] 王学求. 大型矿床地球化学定量评价模型和方法[J].地学前缘,2000,10(1):257-261. Wang Xueqiu. A Geochemical Quantitative Assessment Model and Approach for Large Ore Deposits[J]. Earth Science Frontiers, 2000,10(1):257-261.

[24] Yuan H L.A Compendium of Geochemistry from Solar Nebula to the Human Brain[M]. Princeton:Princeton University Press, 2000: 3-34.

[25] Smith K S, Huyck L O. The Environmental Geochemistry of Mineral Deposits[J]. The Society of Economic Geologists, 1999, 6: 29-70.

[26] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

[27] 赵鹏大.矿床统计预测[M].北京:地质出版社,1994:9-78. Zhao Pengda. Statistical Prediction of Mineral Depo-sits[M].Beijing: Geological Publishing House, 1994:9-78.

[28] 蒋敬业.应用地球化学[M].武汉:中国地质大学出版社, 2006: 2-45. Jiang Jingye. Applied Geochemistry[M]. Wuhan: China University of Geosciences Press, 2006: 2-45.

[29] 王登红, 陈毓川, 陈郑辉, 等. 南岭地区矿产资源形势分析和找矿方向研究[J].地质学报, 2007, 81(7):882-890. Wang Denghong, Chen Yuchuan, Chen Zhenghui, et al. Assessment on Mineral Resource in Nanling Region and Suggestion for Further Prospecting[J].Acta Geologica Sinica, 2007, 81(7):882-890.

[30] 戚长谋, 郝立波, 甘树才. 关于元素丰度问题[J]. 长春科技大学学报, 2000, 30(4): 336-337. Qi Changmou, Hao Libo, Gan Shucai. On Problem of Element Abundance[J].Journal of Changchun University of Science and Technology, 2000, 30(4): 336-337.

[31] 隋延辉, 戚长谋. 关于元素丰度与元素的分散和成相[J]. 吉林地质, 2005, 24(1): 5. Sui Yanhui, Qi Changmou. On Elemental Abundance as Well as Its Dispersion and Phase State[J]. Jilin Geology, 2005, 24(1): 5.

[32] 龚美菱.相态分析与地质找矿:II[M].北京:地质出版社, 2007: 1-78. Gong Meiling. Phase Analysis and Geological Prospecting:II[M]. Beijing: Geological Publishing House, 2007: 1-78.

[33] Shcherbakov Y G. The Distribution of Elements in the Geochemical Provinces and Ore Deposits[J]. Physics and Chemistry of the Earth, 1979, 11: 689-696.

[34] Xie X, Liu D, Xiang Y, et al. Geochemical Blocks for Predicting Large Ore Deposits: Concept and Methodology[J]. Journal of Geochemical Exploration, 2004, 84(2): 77-91.

[35] Xie X J. The Surficial Geochemical Expressions of Giant Ore deposits//Hodgson C J, Clark A H. Giant Ore Deposits: II. Kingston:Queens University, 1995: 479-492.

[1] 蒋夕平,吴凤凰,蒋昱,修连存. 基于FastICA算法的高光谱矿物丰度反演[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1681-1686.
[2] 武国忠,古志宏,徐燕君,杨凤娟. 广东省硫铁矿资源潜力分析[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1129-1135.
[3] 董德明, 宋兴, 花修艺, 袁懋, 梁建海, 郭志勇, 梁大鹏. 吉林省典型废水COD与TOC的相关关系及其形成机制和影响因素[J]. J4, 2012, 42(5): 1446-1455.
[4] 卢双舫, 胡慧婷, 刘海英, 邵明礼, 王立武, 张世广, 黄文彪, 仲维维, 吴高平. 英台断陷深层的气源条件及勘探潜力[J]. J4, 2010, 40(4): 912-920.
[5] 付广, 庞磊. 徐家围子断陷不同储量丰度气藏形成条件的定量研究[J]. J4, 2009, 39(6): 976-982.
[6] 付广,庚琪,王有功,杨永亮. 气藏盖储层压力配置类型及与储量丰度的关系[J]. J4, 2008, 38(4): 587-0593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!