吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1479-1484.doi: 10.13278/j.cnki.jjuese.201505202

• 地质工程与环境工程 • 上一篇    下一篇

冻土旁压试验与单轴试验对比

张虎, 张建明, 苏凯, 刘世伟   

  1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室, 兰州 730000
  • 收稿日期:2014-12-01 发布日期:2015-09-26
  • 通讯作者: 张建明(1963),男,研究员,主要从事寒区岩土工程等方面的研究,E-mail:zhangjm@lzb.ac.cn。 E-mail:zhangjm@lzb.ac.cn
  • 作者简介:张虎(1986),男,助理研究员,博士,主要从事寒区岩土工程等方面的研究,E-mail:zhanghu@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目(40971045);冻土工程国家重点实验室自主研究课题(SKLFSE-ZY-02-6)

Comparison Between Pressuremeter Test and Uniaxial Compression Test of Frozen Soil

Zhang Hu, Zhang Jianming, Su Kai, Liu Shiwei   

  1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2014-12-01 Published:2015-09-26

摘要:

为了认识冻土旁压试验结果与常规试验结果之间的关系,在室内分别开展了冻结重塑黏土的旁压试验和单轴压缩试验,并对试验结果进行了对比分析。结果表明,在各级荷载作用下旁压曲线一般都呈现应变速率衰减的趋势,而单轴曲线在冻土破坏时会出现渐进流动阶段。旁压试验的应力-应变曲线呈现应变硬化型,而且出现初始拟弹性阶段;而单轴试验的应力-应变曲线则属于应变软化型,并在轴向应变大约为10%时达到剪应力峰值。温度相同时,旁压试验的剪切强度以及初始弹性模量都要大于单轴试验,且温度越低差值越大。

关键词: 旁压试验, 单轴压缩试验, 剪切强度, 初始弹性模量

Abstract:

In order to identify the relationship between pressuremeter tests and indoor tests, the pressuremeter tests and uniaxial tests were performed and the comparisons between the test results were analyzed. The results indicate that the pressuremeter creep curve presents a decaying form; while a progressive flow stage appears in the uniaxial test once the frozen soil is broken. The stress-strain curves of pressuremeter test manifest a strain-hardening character with an initial quasi-elastic stage; while the uniaxial test shows a strain-softening stress-strain curve with peak strength at the axial strain of 10%. At the same temperature, the shear strength as well as the initial deformation modulus of pressuremeter test are greater than those of uniaxial tests; and the difference increases with the decreasing of temperature.

Key words: pressuremeter test, uniaxial compression test, shear strength, initial deformation modulus

中图分类号: 

  • TU413.3

[1] Zaretskiy Y K, Fish A M. A Study of the Rheological Properties of Ice Using a Pressuremeter[C]//Sanger F J. Proceedings of 2nd International Conference on Permafrost. Washington D C: United States Planning Committee,National Academy of Sciences, 1973: 846-847.

[2] Johnston L B. Evaluation of In-Situ Creep Properties of Frozen Soils with the Pressuremeter[C]// Sanger F J. Proceedings of 2nd International Conference on Permafrost. Washington D C: United States Planning Committee,National Academy of Sciences, 1973: 310-318.

[3] Murat J R, Ladanyi B, Huneauit P. In-Situ Determination of Creep Properties of Sea Ice with the Pressuremeter[J]. Canadian Geotechnical Journal, 1989, 26: 575-594.

[4] Yu Wenbing, Lai Yuanming. In-Situ Determination of Mechanical Properties of Frozen Soils with the Pressuremeter[J]. Cold Regions Science and Technology, 2002, 34: 179-189.

[5] Baguelin F, Jezequel J F, Lemee E, et al. Expansion of Cylindrical Probes in Cohesive Soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98:1129-1142.

[6] Ladanyi B. In-Situ Determination of Undrained Stress-Strain Behavior of Sensitive Clays with the Pressuremeter[J]. Canadian Geotechnical Journal, 1972, 9: 313-319.

[7] Palmer A C. Undrained Plane-Strain Expansion of a Cylindrical Cavity in Clay: A Simple Interpretation of the Pressuremeter Test[J]. Geotechnique, 1972, 22(3):451-457.

[8] Silvestri V. Assessment of Self-Boring Pressuremeter Tests in Sensitive Clay[J]. Canadian Geotechnical Journal, 2003, 40: 362-387.

[9] 刘小生, 汪小刚,马怀发,等. 旁压试验反演邓肯-张模型参数方法研究[J]. 岩土工程学报, 2004, 26(5): 601-606. Liu Xiaosheng, Wang Xiaogang, Ma Huaifa, et al. Study on Back-Analysis Method of Constitutive Para-meters for Duncan-Chang Model Based on In-Situ Pressuremeter Tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 601-606.

[10] 张虎,张建明,苏凯,等. 高温-高含冰量冻土原位旁压蠕变试验[J]. 吉林大学学报:地球科学版, 2013, 43(6): 1950-1958. Zhang Hu, Zhang Jianming, Su Kai, et al. In-Situ Pressuremeter Creep Test on High-Temperature and High Ice-Rich Permafrost[J]. Journal of Jilin University: Earth Science Edition, 2013,43(6): 1950-1958.

[11] Fawaz A. Parameters Deduced from the Pressuremeter Test[J]. Canadian Geotechanical Journal, 2002, 39: 1333-1340.

[12] 马小杰, 张建明, 郑波, 等. 青藏铁路路基下高温-高含冰量冻土旁压试验研究[J]. 岩土力学, 2008, 29(3): 764-768. Ma Xiaojie, Zhang Jianming, Zheng Bo, et al. Study on Warm and Ice-Rich Permafrost Beneath Qinghai-Tibet Railway Embankment with Pressuremeter[J]. Rock and Soil Mechanics, 2008, 29(3): 764-768.

[13] 常士骠.工程地质手册[M].第4版. 北京:中国建筑工业出版社,2006. Chang Shipiao. Engineering Geology Manual[M]. 4th ed. Beijing:China Architecture and Building Press, 2006.

[14] Kjartanson B H. The Creep of Ice Measured with the Pressuremeter[J]. Canadian Geotechnical Journal, 1988, 25: 250-261.

[15] Ferreira R S, Robertson P K. Interpretation of Un-drained Self-Boring Pressuremeter Test Results Incorporating Unloading[J]. Canadian Geotechnical Journal, 1992, 29: 918-928.

[16] Bolton M D, Whittle R W. A Non-Linear Elastic/Perfect Plastic Analysis for Plane Strain Undrained Expansion Tests[J]. Geotechnique, 1999, 49(1):133-141.

[17] Ladanyi B. Interpretation of Pressuremeter Test Results in Frozen Soils[R]. Ottawa: National Research Council of Canada, 1972.

[1] 张虎, 张建明, 苏凯, 刘世伟. 高温-高含冰量冻土原位旁压蠕变试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1950-1957.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!