吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1530-1538.doi: 10.13278/j.cnki.jjuese.201505302

• 地球探测与信息技术 • 上一篇    下一篇

黏滞声波高斯束叠前深度偏移

吴娟1,2, 陈小宏1,2, 白敏1,2   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)海洋石油勘探国家工程实验室, 北京 102249
  • 收稿日期:2014-12-22 发布日期:2015-09-26
  • 作者简介:吴娟(1984),女,博士研究生,主要从事地震正演与偏移方法研究,E-mail:wujuan-0909@163.com。
  • 基金资助:

    国家自然科学基金项目(U1262207);国家科技重大专项课题(2011ZX05023-005-005,2011ZX05019-006)

Viscoacoustic Gaussian Beam Prestack Depth Migration

Wu Juan1,2, Chen Xiaohong1,2, Bai Min1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum, Beijing 102249, China
  • Received:2014-12-22 Published:2015-09-26

摘要:

高斯束偏移不仅具有接近于波动方程偏移的成像精度,而且保留了Kirchhoff 积分法高效、灵活的优点,可以对复杂介质准确成像。由于实际地下介质具有黏滞性,因此研究黏滞声波叠前深度偏移具有一定的现实意义。笔者采用高斯束偏移方法对地震数据进行吸收衰减补偿。首先给出共炮域高斯束叠前深度偏移原理;然后在此基础上推导补偿吸收衰减的表达式,校正品质因子Q引起的振幅衰减和相位畸变,实现基于吸收衰减补偿的高斯束叠前深度偏移;最后用两层模型和气云模型对偏移方法进行了测试。结果表明,在考虑地下介质的黏滞性时,黏滞声波高斯束叠前深度偏移比声波高斯束叠前深度偏移具有更高的成像分辨率。

关键词: 高斯束, 衰减补偿, 黏滞声波, 格林函数, 叠前深度偏移

Abstract:

Gaussian beam migration is an effective and efficient depth migration method with its accuracy comparable to the wave equation migration and its flexibility comparable to Kirchhoff migration. The viscoacoustic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. Gaussian beam migration is used to perform seismic data compensation for frequency dependent absorption and dispersion. Gaussian beam prestack depth migration algorithms that operate on common-shot gathers are presented to derive expressions about attenuation and compensation which correct amplitude attenuation and phase distortion caused by Q in order to realize Gaussian beam prestack depth migration. The numerical modeling suggests that the viscoacoustic Gaussian beam prestack depth migration have a higher imaging resolution than the acoustic Gaussian beam prestack depth when the viscosity of the subsurface is considered.

Key words: Gaussian beam, attenuation and compensation, viscoacoustic, Green function, prestack depth migration

中图分类号: 

  • P631.4

[1] Zhou J,Birdus S,Hung B,et al.Compensating Attenuation Due to Shallow Gas Through Q Tomography and Q-PSDM: A Case Study in Brazil[C]//81st Annual International Meeting. San Antonio: SEG, 2011: 3332-3336.

[2] Bickel S H, Natarajan R R. Plane-Wave Q Deconvolution[J]. Geophysics, 1985, 50(9): 1426-1439.

[3] Hargreaves N D, Calvert A J. Inverse Q Filtering by Fourier Transform[J]. Geophysics, 1991, 56(4): 519-527.

[4] Wang Y H.Inverse Q Filter for Seismic Resolution Enhancement[J]. Geophysics, 2006, 71(3): 51-60.

[5] 冯晅, 张瑾, 刘财, 等. 基于改进的 Kolsky 模型波场延拓公式的纵波Q值, 横波Q值估计[J]. 吉林大学学报:地球科学版, 2014, 44(1): 359-368. Feng Xuan, Zhang Jin, Liu Cai, et al. Estimation of P-and S-Waves Quality Factors Based on the Formula of the Wave-Field Continuation in Modified Kolsky Model[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(1): 359-368.

[6] Zhang C H, Ulrych T J. Refocusing Migrated Seismic Images in Absorptive Media[J]. Geophysics, 2010, 75(3): 103-110.

[7] Mittet R, Sollie R, Hokstad K. Prestack Depth Migration with Compensation for Absorption and Dispersion[J]. Geophysics, 1995, 60 (5): 1485-1494.

[8] Zhang J, Wapenaar K. Wavefield Extrapolation and Prestack Depth Migration in Anelastic Inhomogeneous Media[J]. Geophysical Prospecting, 2002, 50(10): 629-643.

[9] Mittet R. A Simple Design Procedure for Depth Extrapolation Operators that Compensate for Absorption and Dispersion[J]. Geophysics, 2007, 72(2): 105-112.

[10] Zhang J, Wu J, Li X. Compensation for Absorption and Dispersion in Prestack Migration: An Effective Q Approach[J]. Geophysics, 2013, 78(1): 1-14.

[11] Hill N R. Gaussian Beam Migration[J]. Geophysics, 1990, 55: 1416-1428.

[12] Hill N R. Prestack Gaussian-Beam Depth Migration[J]. Geophysics, 2001, 66: 1240-1250.

[13] Hale D. Migration by the Kirchhoff, Slant Stack and Gaussian Beam Methods[R]. Golden: Colorado School of Mines Center for Wave Phenomena, 1992.

[14] Hale D. Computational Aspects of Gaussian Beam Migration[R]. Golden: Colorado School of Mines Center for Wave Phenomena, 1992.

[15] Gray S H. Gaussian Beam Migration of Common-Shot Records[J]. Geophysics, 2005, 70(4): 71-77.

[16] Gray S H, Bleistein N. True-Amplitude Gaussian-Beam Migration[J]. Geophysics, 2009, 74(2): 11-23.

[17] Popov M M, Semtchenok N M, Popov P M, et al. Depth Migration by the Gaussian Beam Summation Method[J]. Geophysics, 2010, 75(2): 81-93.

[18] Cerveny V. A Note on Dynamic Ray Tracing in Ray-Centered Coordinates in Anisotropic Inhomogeneous Media[J]. Studia Geophysica et Geodaetica, 2007, 51: 411-22.

[19] 岳玉波. 复杂介质高斯束偏移成像方法研究[D]. 青岛: 中国石油大学, 2011. Yue Yubo. Study on Gaussian Beam Migration Methods in Complex Medium[D]. Qingdao: China University of Petroleum, 2011.

[20] Xie Y, Notfors C, Sun J, et al. 3D Prestack Beam Migration with Compensation for Frequency Depen-dent Absorption and Dispersion[C]//72nd EAGE Conference & Exhibition Incorporating SPE EUROPEC. Barcelona: [s. n.], 2010.

[21] Keers H, Vasco D W, Johnson L R. Viscoacoustic Crosswell Imaging Using Asymptotic Waveforms[J]. Geophysics, 2001, 66: 861-870.

[22] Zhu T Y, Harris J M, Biondi B. Q-Compensated Reverse-Time Migration[J]. Geophysics, 2014, 79(3): 77-87.

[1] 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383.
[2] 冯晅, 鲁晓满, 刘财, 周超, 金泽龙, 张明贺. 基于逐减随机震源采样法的频率域二维黏滞声波方程全波形反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1865-1873.
[3] 刘洋, 李炳秀, 刘财, 陈常乐, 杨学亭. 局部时频变换域地震波吸收衰减补偿方法[J]. 吉林大学学报(地球科学版), 2016, 46(2): 594-602.
[4] 翁爱华,刘云鹤,贾定宇,殷长春. 基于电场不连续边界条件的层状介质电磁格林函数计算[J]. 吉林大学学报(地球科学版), 2013, 43(2): 603-609.
[5] 王德利,程浩,朱恒,冯飞. 基于反褶积算法的地震干涉技术被动源成像[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1920-1926.
[6] 周辉, 谢春临, 王尚旭, 李国发. 复杂地表地震资料叠前深度偏移成像[J]. J4, 2012, 42(1): 262-268.
[7] 翁爱华, 刘云鹤, 陈玉玲, 贾定宇, 廖祥东, 董瑞春. 结合有限项多指数级数近似的点源格林函数闭式算法[J]. J4, 2011, 41(1): 258-264.
[8] 张金会, 孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. J4, 2009, 39(5): 923-928.
[9] 潘宏勋,方伍宝. 基于PC机群波动方程叠前深度偏移的并行计算策略[J]. J4, 2008, 38(4): 708-0712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!