吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1667-1690.doi: 10.13278/j.cnki.jjuese.201506110
段志明1, 李光明1, 王保弟1, 李应栩1, 黄勇1, 郭琳2, 段瑶瑶3
Duan Zhiming1, Li Guangming1, Wang Baodi1, Li Yingxu1, Huang Yong1, Guo Lin2, Duan Yaoyao3
摘要:
查个勒铅锌矿床是西藏中冈底斯成矿带中段新发现的一个大型斑岩-矽卡岩型矿床,但其成岩成矿时代一直缺乏年代学约束。本文对该矿床含矿斑岩进行了LA-ICP-MS锆石U-Pb定年、辉钼矿Re-Os定年、主量和微量元素分析及Sr-Nd-Hf同位素组成研究,获得中冈底斯成矿带中段铜钼铅锌银矿化时代。含矿斑岩LA-ICP-MS锆石U-Pb年龄为64.6~62.9 Ma,代表岩浆的结晶年龄;辉钼矿Re-Os等时线年龄为(62.3±1.4)Ma,代表查个勒主成矿年龄,与其构造岩浆事件一致;结合区域林子宗群大规模火山活动(65~45 Ma)以及以亚贵拉铅锌矿床(68.6~ 65.0 Ma)为代表的成矿作用,表明在印度与欧亚大陆主碰撞过程中均可产生不同规模的成矿作用。查个勒含矿斑岩具富硅、富钾,贫钛、贫磷特征,铝饱和指数(A/CNK)为1.12 ~ 1.60,富集大离子亲石元素Rb、Th、U,亏损高场强元素Nb、Zr等,与冈底斯成熟大陆地壳物质相比具相对高的εNd(t)值(-6.64 ~ -5.79)和相对低的(87Sr/86Sr)i值(0.711 813~0.717 307),并具不均一的锆石εHf(t)值(-7.02~-1.27)以及古老的锆石Hf同位素地壳模式年龄(TCDM=1 093~1 419 Ma),属于过铝质S型花岗岩类。本文认为中冈底斯成矿带中段古新世岩浆活动和成矿作用,很可能与雅鲁藏布江洋盆闭合之后的印-亚大陆碰撞诱发幔源岩浆底侵导致的冈底斯地体古老地壳物质部分熔融有关,岩浆在上升过程中有不同程度的分离结晶。
中图分类号:
[1] 李奋其, 高明, 唐文清, 等. 西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义[J]. 中国地质, 2010, 37(6): 1566-1674. Li Fenqi, Gao Ming, Tang Wenqing, et al. U-Pb Zircon LA-ICP-MS Age of the Yaguila Molybdenum-Bearing Intrusion in Tibet and Its Geological Significance[J]. Geology in China, 2010, 37(6): 1566-1674.[2] 高一鸣, 陈毓川, 唐菊兴, 等. 西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义[J]. 地质通报, 2011, 30(7): 1027-1036. Gao Yiming, Chen Yuchuan, Tang Juxing, et al. Re-Os Dating of Molybdenite from the Yaguila Porphyry Molybdenum Deposit in Gongbo'gyamda Area, Tibet, and Its Geological Significance[J]. Geololgical Bulletin of China, 2011, 30(7): 1027-1036.[3] 王保弟, 郭琳, 王立全, 等. 中冈底斯成矿带查个勒矿床含矿岩体的年代学及成因[J]. 岩石学报, 2012, 28(5): 1647-1662. Wang Baodi, Guo Lin, Wang Liquan, et al. Geochronology and Petrogenesis of the Ore-Bearing Pluton in Chagele Deposit in Middle of the Gangdese Metallogenic Belt[J]. Acta Petrologica Sinica, 2012, 28(5): 1647-1662.[4] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet:39Ar/40Ar Dating, Petrological Characteristics and Geodynamical Significance[J]. Earth and Planetary Science Letters, 1986, 79: 281-302.[5] Ding L, Lai Q Z. New Geological Evidence of Crustal Thickening in the Gangdese Block Prior to the Indo-Asian Collision[J]. Chinese Science Bulletin, 2003, 48(15): 1604-1610.[6] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution[J]. Acta Petrologica Sinica, 2006, 22(3): 521-533.[7] 朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(3): 534-546. Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northrn Gangdese: New Insights from Volcanic Rocks[J]. Acta Petrologica Sinica, 2006, 22(3): 534-546.[8] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报, 2008, 27(4): 458-468. Zhu Dicheng, Pan Guitang, Wang Liquan, et al. Spatial-Tempotal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China[J]. Geololgical Bulletin of China, 2008, 27(4): 458-468.[9] Zhu D C, Mo X X, Wang L Q, et al. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes[J]. Science China Earth Sciences, 2009, 39(7): 833-848.[10] Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane: Record of A Microcontinent and Its Histories of Drift and Growth[J]. Earth and Planetary Science Letters, 2011, 301(1 / 2): 241-255.[11] 侯增谦, 曲晓明, 黄卫, 等. 冈底斯斑岩铜矿成矿带有望成为西藏第二条玉龙铜矿带[J]. 中国地质, 2001, 28(10): 27-29. Hou Zengqian, Qu Xiaoming, Huang Wei, et al. The Gangdese Porphyry Copper Belt: The Second Significant Porphyry Copper Belt in Tibetan Plateau[J]. Geology in China, 2001, 28(10): 27-29.[12] 曲晓明, 侯增谦, 黄卫. 冈底斯斑岩铜矿(化)带: 西藏第二个"玉龙"铜矿带?[J].矿床地质, 2001, 20(4): 355-366. Qu Xiaoming, Hou Zengqian, Huang Wei. Is Gangdese Porphyry Copper Belt the Second"Yulong"Copper Belt?[J]. Mineral Deposits, 2001, 20(4): 355-366.[13] 郑有业, 王保生, 樊子珲, 等. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J]. 地质科技情报, 2002, 21(2): 55-60. Zheng Youye, Wang Baosheng, Fan Zihui, er al. Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains Tibet and the Metallogenic Potentialities of Copper Gold Polymetal[J].Geolo-gical Science and Technology Information, 2002, 21(2): 55-60.[14] 胡道功, 吴珍汉, 江万, 等. 西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究[J]. 中国科学:D辑: 地球科学, 2005, 35(1): 29-37. Hu Daogong, Wu Zhenhan, Jiang Wan, et al. SHRIMP U-Pb Ages of Zircons from Dioritic Gneiss in the Nyainqêntanglha Mountains, Tibet[J]. Science in China: Series D: Earth Sciences, 2005, 35(1): 29-37.[15] 秦克章, 李光明, 赵俊兴, 等. 西藏首例独立钼矿:冈底斯沙让大型斑岩钼矿的发现及其意义[J]. 中国地质, 2008, 35(6): 1101-1112. Qin Kezhang, Li Guangming, Zhao Junxing, et al. Discovery of Sharing Iarge-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance[J]. Geology in China, 2008, 35(6): 1101-1112.[16] 唐菊兴, 陈毓川, 王登红, 等. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J]. 地质学报, 2009, 85(5): 698-704. Tang Juxing, Chen Yuchuan, Wang Denghong, et al. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbogyamda County, Tibet and Its Geological Significance[J]. Acta Geologica Sinica, 2009, 85(5): 698-704.[17] 费光春, 温春齐, 周雄, 等. 西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义[J]. 矿物岩石, 2010, 30(3): 38-43. Fei Guangchun, Wen Chunqi, Zhou Xiong, et al. Laser Microprobe 40Ar-39Ar Geochronology of Quartz from Dongzhongla Lead-Zinc Deposit in Tibet and Its Significance[J]. Journal of Mineralogy Petrology, 2010, 30(3): 38-43.[18] 李应栩, 谢玉玲, 陈伟, 等. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义[J]. 岩石学报, 2011, 27(7): 2023-2033. Li Yingxu, Xie Yuling, Chen Wei. et al. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication[J]. Acta Petrologica Sinica, 2011, 27(7): 2023-2033.[19] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Sta-ndard[J]. Chemical Geology, 2008, 257(1 / 2): 34-43.[20] Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1 /2): 537-571.[21] Andersen T. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/ 2): 59-79.[22] Liu Y, Hu Z, Zong K, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.[23] Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Geochronology Center Special Publication, 2003, 41-70.[24] 杜安道, 赵敦敏, 王淑贤, 等. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]. 岩矿测试, 2001, 20(4): 247-252. Du Andao, Zhao Dunmin, Wang Shuxian, et al. Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation[J]. Rock and Mineral Analysis, 2001, 20(4): 247-252.[25] Yuan H L, Gao S, Dai M N, et al. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2): 100-118.[26] Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh Pressuremetamorphic Belt, China[J]. Chemical Geology, 2002, 186: 281-299.[27] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates[J]. Chemical Geology, 2008, 247(1/2): 133-153.[28] Hoskin P W O, Black L P. Metamorphic Zircon For-mation by Solid-State Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423-439.[29] Hou Z Q, Gao Y F, Qu X M, et al. Origin of Adakitic Intrusives Generated During Mid-Miocene East-West Extension in Southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.[30] 王保弟, 许继峰, 陈建林, 等. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究[J]. 岩石学报, 2010, 26(6): 1820-1832. Wang Baodi, Xu Jifeng, Chen Jianlin, et al. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt[J]. Acta Petrologica Sinica, 2010, 26(6): 1820-1832.[31] 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带:Ⅲ:后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6): 629-651. Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ:Mineralization in Post-Collisional Extension Setting[J]. Mineral Deposits, 2006, 25(6): 629-651.[32] Sun S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, 1989, 42(1): 313-345.[33] 吴福元, 李献华, 郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.[34] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet[J]. Geology, 2006, 34(9): 745-748.[35] 李皓扬, 钟孙霖, 王彦斌, 等. 藏南林周盆地林子宗火山岩的时代, 成因及其地质意义: 锆石 U-Pb 年龄和 Hf 同位素证据[J]. 岩石学报, 2007, 23(2): 493-500. Li Haoyang, Zhong Sunlin, Wang Yanbin, et al. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes[J]. Acta Petrologica Sinica, 2007, 23(2): 493-500.[36] 姜昕, 赵志丹, 朱弟成, 等. 西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学[J]. 岩石学报, 2010, 26(7): 2155-2164. Jiang Xin, Zhao Zhidan, Zhu Dicheng, et al. Zircon U-Pb Geochronology and Hf Isotopic Geochemistry of Jiangba,Bangba,and Xiongba Granitoids in Western Gangdese, Tibet[J]. Acta Petrologica Sinica, 2010, 26(7): 2155-2164.[37] Miller C, Schuster R, Klotzli U, et al. Post-Collisional Potassic and Ultra-Potassic Magmatism in SW Tibet: Geochemical, Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis[J]. Journal of Petrology, 1999, 83: 5361-5375.[38] Mahoney J J, Frei R, Tejada M L G, et al. Tracing the Indian Ocean Mantle Domain Through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor[J]. Journal of Petrology,1998, 39(7): 1285-1306.[39] 曲晓明, 侯增谦, 李振清. 冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义[J]. 地质学报, 2003, 77(2): 245-252. Qu Xiaoming, Hou Zengqian, Li Zhenqing.40Ar/39Ar Ages of the Ore-Bearing Porphyries of the Gangdese Porphyry Copper Belt and Their Geological Significances[J]. Acta Geologica Sinica, 2003, 77(2): 245-252.[40] 侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, 20(2): 239-248. Hou Zengqian, Gao Yongfeng, Meng Xiangjin, et al. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen[J]. Acta Petrologica Sinica, 2004, 20(2): 239-248.[41] 侯增谦, 孟祥金, 曲晓明, 等. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性: 源岩相变及深部过程约束[J]. 矿床地质, 2005, 24(2): 108-121. Hou Zengqian, Meng Xiangjin, Qu Xiaoming, et al. Copperore Potential of Adakitic Intrusives in Gangdese Porphyry Copper Belt: Constrains from Rock Phase and Deep Melting Process[J]. Mineral Depo-sits, 2005, 24(2): 108-121.[42] 夏抱本, 夏斌, 王保弟, 等. 冈底斯中段达布埃达克质含矿斑岩: 增厚下地壳熔融与斑岩铜钼矿成因[J]. 地质科技情报, 2007, 26(4): 19-26. Xia Baoben, Xia Bin, Wang Baodi, et al. Ore-Bearing Adakitic Porphyry in the Middle of Gangdese: Thickened Lower Crustal Melting and the Genesis of Porphyry Cu-Mo Deposit[J]. Geological Science and Technology Information, 2007, 26(4): 19-26.[43] Mo X, Hou Z, Niu Y, et al. Mantle Contributions to Crustal Thickening During Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet[J]. Lithos,2007, 96(1/2): 225-242.[44] 刘燊, 胡瑞忠, 迟效国, 等. 羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨[J]. 大地构造与成矿学, 2003, 27(2): 167-175. Liu Shen, Hu Ruizhong, Chi Xiaoguo, et al. Geochemical Characteristics and Petrogenesis fo the Post Collision Ultrapotassium Volcanic Rocks in Qiangtang Rock Zone[J]. Geotectonica et Metallogenia, 2003, 27(2): 167-175.[45] Rollison H R. Using Geochemical Data: Eyaluation, Presentation, Interpretation[M]. New York:Pearson Education Limited, 1993.[46] 王保弟, 许继峰, 张兴国, 等. 青藏高原西部赛利普中新世火山岩源区: 地球化学及Sr-Nd同位素制约[J]. 岩石学报, 2008, 24(2): 265-278. Wang Baodi, Xu Jifeng, Zhang Xingguo, et al. Petrogenesis of Miocene Volcanic Rocks in the Sailipu Area, Western Tibetan Plateau: Geochemical and Sr-Nd Isotopic Constraints[J]. Acta Petrologica Sinica, 2008, 24(2): 265-278.[47] Ding L, Lai Q. New Geological Evidences of Crust Thickening in Gangdese Block Prior to the Indo-Asian Collision[J]. Chinese Science Bulletin, 2003, 48: 836-842.[48] Mao J W, Pirajno F, Lehmann B, et al. Distribution of Porphyry Deposits in the Eurasian Continent and Their Corresponding Tectonic Settings[J]. Journal of Asian Earth Sciences, 2014, 79: 576-584.[49] 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2): 340-351. Hou Zengqian, Mo Xuanxue, Yang Zhiming, et al. Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types[J]. Geology in China, 2006, 33(2): 340-351.[50] Chappell B. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46(3): 535-551.[51] Li X H, Li Z X, Li W X, et al. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J]. Lithos, 2007, 96(1): 186-204.[52] Pearce J S. Sources and Setting of Granitic Rocks[J]. Episodes, 1996, 19: 120-125.[53] Harris N B W, Pearce J A,Tindle A G. Geochemical Characteristics of Collision-Zone Magmatism[J]. Geological Society, 1986, 19(1): 67-81.[54] 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. Mo Xuanxue, Dong Guochen, Zhao Zhidan, et al. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese,Tibet and Implication for Crustal Growth and Evolution[J]. Geological Journal of China Universities, 2005, 11(3): 281-290.[55] 朱弟成, 莫宣学, 王立全, 等. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf 同位素约束[J]. 中国科学:D辑: 地球科学, 2009, 39(7): 833-848. Zhu Dicheng, Mo Xuanxue, Wang Liquan, et al. Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes[J]. Science in China: Series D: Earth Sciences, 2009, 39(7): 833-848.[56] 高一鸣, 陈毓川, 王成辉, 等. 亚贵拉沙让洞中拉矿集区中新生代岩浆岩Hf同位素特征与岩浆源区示踪[J]. 矿床地质, 2011, 30(2): 279-291. Gao Yiming, Chen Yuchuan, Wang Chenghui, et al. Zircon Hf Isotopic Characteristics and Constraints on Petrogenesis of Mesozoic-Cenozoic Magmatic Rocks in Nyainqentanglha Region,Tibet[J]. Mineral Depo-sits, 2011, 30(2): 279-291.[57] Kemp A, Hawkesworth C, Foster G, et al. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon[J]. Science, 2007, 315(5814): 980-983.[58] Bolhar R, Weaver S, Whitehouse M, et al. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite(New Zealand)[J]. Earth and Planetary Science Letters, 2008, 268(3): 312-324.[59] Ji W, Wu F, Chung S, et al. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet[J]. Chemical Geology, 2009, 262(3/4): 229-245.[60] 朱弟成, 潘桂棠, 莫宣学, 等. 印度大陆和欧亚大陆的碰撞时代[J]. 地球科学进展, 2004, 19(4): 564-571. Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. The Age of Collision Between India and Eurasia[J]. Advance in Earth Sciences, 2004, 19(4): 564-571.[61] 邓万明. 青藏高原新生代岩浆活动与岩石圈演化[M]//青藏项目专家委员会.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊.北京:科学出版社, 1994:288-295. Deng Wanming. Cenozoic Magmatic Activities and Lithospheric Evolution of the Qinghai-Xizang Plateau[M]//Expert Committee on Qinghai-Tibet Project Studies on Formation and Evolution. Environmental Changes and Ecosystem in the Qinghai-Xizang Plateau. Beijing: Science Press, 1994: 288-295.[62] Butler R W H, Harris N B W, Whittington A G. Interactions Between Deformation, Magmatism and Hydrathermal Activity During Active Crustal Thickening: A Field Example from Nanga Parbat, Pakistan Himalayas[J]. Mineralogical Magazine, 1997, 61: 37-52.[63] Patino Douce A E, McCarthy T C. Melting of Crustal Rocks During Continental Collision and Subduction[M]. Netherlands: Klswer Academic Publishers, 1998: 27-55.[64] 许志琴, 姜枚, 杨经绥. 青藏高原北部隆升的深部构造物理作用:以"格尔木唐古拉山"地质及地球物理综合剖面为例[J]. 地质学报, 1996, 70(3): 195-206. Xu Zhiqin, Jiang Mei,Yang Jingsui. Tectonophysical Process at Depth for the Uplift of the Northern Part of the Qinghai-Tibet Plateau: Illu-strated by the Geological and Geophysical Comprehensive Profile from Golmud to the Tanggula Mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 1996, 70(3): 195-206. |
[1] | 崔建军, 王艳红, 郑光高, 施炜, 马立成. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 139-153. |
[2] | 孙珍军, 孙国胜, 于赫楠, 向柱, 田毅, 刘彤, 陈旭, 李杨. 赤峰撰山子花岗岩年代学、地球化学特征及其成岩动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1740-1753. |
[3] | 刘玉, 孙加鹏, 王献忠, 张文强, 杨华本, 梁中恺, 徐立明. 大兴安岭北部新林地区大乌苏混杂岩锆石U-Pb年代学、地球化学及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1383-1405. |
[4] | 孔华, 许明珠, 张强, 唐宇蔷, 赵佳进. 湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位组成及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 627-638. |
[5] | 张晓飞, 李智明, 贾群子, 宋忠宝, 陈向阳, 张雨莲, 李东生, 舒晓峰. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 749-765. |
[6] | 尹志刚, 王文材, 张跃龙, 王阳, 韩宇, 曹忠强, 郑贝. 伊勒呼里山中生代火山岩:锆石U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版), 2016, 46(3): 766-780. |
[7] | 严威, 邱殿明, 丁清峰, 刘飞. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 443-460. |
[8] | 聂立军, 于宏斌, 张建泽, 王聪, 李栋, 李阳. 吉林省下三叠统卢家屯组LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 453-470. |
[9] | 司秋亮, 崔天日, 唐振, 李伟, 吴新伟, 江斌, 李林川. 大兴安岭中段柴河地区玛尼吐组火山岩年代学、地球化学及岩石成因[J]. 吉林大学学报(地球科学版), 2015, 45(2): 389-403. |
[10] | 李凤宪, 白新会, 万乐, 关庆彬, 李鹏川. 内蒙苏尼特右旗吉布胡楞土岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 429-440. |
[11] | 刘书生,范文玉,罗茂金,唐发伟,朱华平,陈文峰. 老挝南部帕莱通双峰式火山岩锆石U-Pb定年及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(2): 540-553. |
[12] | 孙巍,迟效国,潘世语,张蕊,权京玉,范乐夫,王利民. 大兴安岭北部新林地区倭勒根群大网子组锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(1): 176-185. |
[13] | 赵正,陈毓川,曾载淋,陈郑辉,王登红,赵斌,张家菁. 南岭东段岩前钨矿床地质特征及成岩成矿时代[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1828-1839. |
[14] | 段志明, 李光明, 张晖, 李应栩, 段瑶瑶. 色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1864-1877. |
[15] | 于介江,柳佳成,张嘉惠,葛文春,侯雪刚. 黑龙江省东北部街津口-抚远地区花岗闪长斑岩的锆石U-Pb定年及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1489-1500. |
|