吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 617-626.doi: 10.13278/j.cnki.jjuese.201602306

• 地球探测与信息技术 • 上一篇    

塔里木河下游土地利用覆被MISR多角度遥感制图

杨雪峰1, 王雪梅1,2, 毛东雷1,2   

  1. 1. 新疆师范大学地理科学与旅游学院, 乌鲁木齐 830054;
    2. 新疆维吾尔自治区重点实验室"新疆干旱区湖泊环境与资源实验室", 乌鲁木齐 830054
  • 收稿日期:2015-06-08 发布日期:2016-03-26
  • 通讯作者: 王雪梅(1976-),女,副教授,博士,主要从事干旱区资源环境遥感技术应用研究,E-mail:502529672@qq.com E-mail:502529672@qq.com
  • 作者简介:杨雪峰(1972-),男,讲师,硕士,主要从事干旱区资源环境遥感技术应用研究,E-mail:744157426@qq.com
  • 基金资助:

    国家自然科学基金项目(41261051);新疆维吾尔自治区重点实验室开放基金(XJDX0909-2010-08)

Mapping Land Use and Land Cover Through MISR Multi-Angle Imagery in the Lower Tarim River

Yang Xuefeng1, Wang Xuemei1,2, Mao Donglei1,2   

  1. 1. College of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, China;
    2. Xinjiang Uygur Autonomous Region Key laboratory "Xinjiang Laboratory of Lake Environment and Resources in Arid Zone", Urumqi 830054, China
  • Received:2015-06-08 Published:2016-03-26
  • Supported by:

    Supported by the National Natural Science Foundation of China (41261051) and the Open Funds of Key Laboratory of Xinjiang Uygur Autonomous Region (XJDX0909-2010-08)

摘要:

通过对塔里木河下游MISR卫星多角度观测数据的不同组合构建多角度数据集,探索多角度观测与传统垂直观测对土地利用覆被遥感制图效果的影响,分别使用SVM(支持向量机)与传统的MLC(最大似然分类法)作为分类器,对分类后得到的混淆矩阵进行分析。结论证实:无论是使用传统的MLC还是SVM作为分类器,多角度观测都取得比垂直观测更高的总体分类精度;MISR近红外波段虽然分辨率较低,但依然含有丰富的信息,对地表覆被的分类有重要影响;无论使用哪一数据集,SVM法都能获得更高的分类精度;不同相机对分类结果的影响各不相同,其中C、D相机的作用更重要。

关键词: MISR, 支持向量机, 最大似然分类法, 塔里木河下游, 土地利用覆被

Abstract:

MISR multi-angular data have been built through 9 cameras combination, and the infulence on land use and land cover mapping by multi-angular observing and traditional nadir approach has been explored in the lower Tarim River. In addition, SVM (support vector machine) and conventional MLC (maximum likelihood classification) were respectively implemented to observe the differentiation of Confusion Matrix. The findings are presented as follows:Multi-angular oberservation achieved higher classification accuracy compared to nadir approach no matter MLC or SVM classifiers being used; Although the lower resolution, MISR obtains abundent information, and thus has a great impact on the classification of vegetation;the classification by SVM shows a higher accuracy than that by MLC no matter which data set is used;different cameras lead to different results, but camera C and D paly more important roles than the others.

Key words: MISR, support vector machine, maximum lickelihood classification, lower Tarim River, land use and land cover

中图分类号: 

  • P627

[1] Richardson A J, Wiegand C L. Distinguishing Vegetation from Soil Background Information[J]. Photogram Engi & Remote Sensing, 1977, 43(12):1541-1552.

[2] 阿布都沙拉木·加拉力丁.塔里木河流域胡杨保护区土地覆盖变化研究[J].干旱区资源与环境, 2010, 24(1):154-157. Abdisalam Jalaldin. Study on Land Cover Change of Tarim Poplar Nature Reservation[J]. Journal of Arid Land Resources and Environment, 2010, 24(1):154-157.

[3] Buhe A, Tsuchiya K, Kaneko M, et al. Land Cover of Oases and Forest in Xinjiang, China Retrieved from ASTER Data[J]. Advances in Space Research, 2007, 39(1):39-45.

[4] 黄粤,包安明.间歇性输水影响下的2001-2011年塔里木河下游生态环境变化[J].地理学报, 2013, 9(68):1251-1262. Huang Yue, Bao Anming. Eco-Environmental Change in the Lower Tarim River Under the Influence of Intermittent Water Transport[J]. Acta Geographica Sinica, 2013, 9(68):1251-1262.

[5] 张旭,刘新春.EOS MODIS影像处理在塔里木河下游植被监测中的应用[J].干旱区研究, 2005,22(4):532-536. Zhang Xu, Liu Xinchun. Study on the EOS/MODIS Image Processing and Its Application in Monitoring the Vegetation Change in the Lower Reaches of the Tarim River[J]. Arid Zone Research, 2005, 22(4):532-536.

[6] Diner D J, Beckert J C, Reilly T H. Multi-Angle Imaging Spectroradiometer (MISR) Instrument Description and Experiment Overview[J].IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1072-1087.

[7] Chopping M J, Rango A, Ritchie J C. Improved Semi-Arid Community Type Differentiation with the NOAA AVHRR via Exploitation of the Directional Signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(5):1132-1149.

[8] Su L, Chopping M J. Differentiation of Semi-Arid Vegetation Types Based on Multi-Angular Observations from MISR and MODIS[J]. International Journal of Remote Sensing, 2007,6(28):1419-1424.

[9] Jiao Z, Hill M J, Schaaf C B, et al. An Anisotropic Flat Index (AFX) to Derive BRDF Archetypes from MODIS[J]. Remote Sensing of Environment, 2014, 141(4):168-187.

[10] 刘晏良.塔里木河中下游实地踏勘报告[M].北京:中国统计出版社,2000. Liu Yanliang. The Report of Field Survey of Talimu River[M]. Beijing:The Statistics Publishing House of China, 2000.

[11] 张绘芳,李霞.塔里木河下游胡杨种群空间分布格局分析[J].西北植物学报,2006,26(10):2125-2130. Zhang Huifang, Li Xia. Spatial Distribution Pattern of Populuseuphratica Populations in the Lower Reaches of Tarim River[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006,26(10):2125-2130.

[12] Diner D J, Martonchik J V, Borel, et al. Multi-Angle Imaging Spectro-Radiometer Level 2 Surface Retrieval Algorithm Theoretical Basis Document[EB/OL].[2014-12-02]. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/MISR/atbd-misr-10.pdf.

[13] MISR Homepage[EB/OL].[2015-05-15]. http://www.misr.jpl.nasa.gov/.

[14] MISR Data Products Specifications[EB/OL].[2015-05-15]. http://eosweb.larc.nasa.gov/.

[15] Rahman H, Dedieu G. SMAC:A Simplified Method for the Atmospheric Correction of Satellite Measurements in the Solar Spectrum[J]. International Journal of Remote Sensing, 1994,15(1):123-143.

[16] 武红敢,涂琼.WorldView2影像的单株木监测潜力分析:以杭州西山地区为例[J].林业资源管理,2012(6):92-96. Wu Honggan, Tu Qiong. Analysis on Monitoring Potential of Individual Trees Based on WorldView2 Image:A Case Study of West Mountain Areas in Hangzhou City[J]. Forest Resources Management, 2012(6):92-96.

[17] 孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003. Sun Jiabing. Principles and Applications of Remote Sensing[M]. Wuhan:Wuhan University Press, 2003.

[18] Exelis. ENVI Homepage[EB/OL].[2014-12-01] http://www.exelisvis.com/.

[19] Vapnik V. The Nature of Statistical Learning Theory[M]. NewYork:Springer-Verlag,1995.

[20] Giorgos Mountrakis, Jungho Im. Support Vector Ma-chines in Remote Sensing:A Review[J]. Journal of Photogrammetry and Remote Sensing, 2011, 66:247-259.

[21] Chang C C, Lin C J. LIBSVM:A Library for Support Vector Machines[EB/OL].[2014-05-01]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[1] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[2] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[3] 王常明, 田书文, 王翊虹, 阮云凯, 丁桂伶. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1168-1175.
[4] 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568.
[5] 牟丹, 王祝文, 黄玉龙, 许石, 周大鹏. 基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例[J]. 吉林大学学报(地球科学版), 2015, 45(2): 639-648.
[6] 杨佳佳, 姜琦刚, 赵静, 徐言, 孟翔冲. 基于改进的SVM技术和高光谱遥感的标准矿物定量计算[J]. J4, 2012, 42(3): 864-871.
[7] 牛瑞卿, 彭令, 叶润青, 武雪玲. 基于粗糙集的支持向量机滑坡易发性评价[J]. J4, 2012, 42(2): 430-439.
[8] 许长福, 李雄炎, 谭锋奇, 于红岩, 李洪奇. 任务驱动数据挖掘方法的提出及在低阻油层识别中的应用[J]. J4, 2012, 42(1): 39-46.
[9] 王利花, 周云轩, 田波. 基于TM和ETM+影像数据的东沙环礁珊瑚礁监测[J]. J4, 2011, 41(5): 1630-1637.
[10] 佴磊, 彭文, 袁明哲, 周能娟. 基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测[J]. J4, 2011, 41(3): 799-804.
[11] 李秀珍, 孔纪名, 王成华. 多分类支持向量机在滑坡稳定性判识中的应用[J]. J4, 2010, 40(3): 631-637.
[12] 徐红敏,杨天行. 基于支持向量机分类算法的湖泊水质评价研究[J]. J4, 2006, 36(04): 570-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!