吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1466-1474.doi: 10.13278/j.cnki.jjuese.201605202

• 地质工程与环境工程 • 上一篇    下一篇

河西寒旱区盐渍土地层温湿度变化模式

赵天宇1,2, 张虎元1, 严耿升3, 李锦2   

  1. 1. 兰州大学西部灾害与环境力学教育部重点实验室, 兰州 730000;
    2. 甘肃省交通规划勘察设计院有限责任公司, 兰州 730030;
    3. 中国电建集团西北勘测设计研究院有限公司, 西安 710065
  • 收稿日期:2016-01-05 出版日期:2016-09-26 发布日期:2016-09-26
  • 通讯作者: 张虎元(1963),男,教授,博士生导师,主要从事环境岩土工程教学与研究工作,E-mail:zhanghuyuan@lzu.edu.cn E-mail:zhanghuyuan@lzu.edu.cn
  • 作者简介:赵天宇(1985),男,高级工程师,博士,主要从事岩土工程研究工作,E-mail:zhaoty07@lzu.edu.cn
  • 基金资助:

    中国电建集团科技项目(CHC-KJ-2009-12);甘肃省交通运输厅科技项目(2013-10)

Variation Pattern of Temperature and Humidity for Saline Soil in Cold and Arid Regions of Hexi Corridor

Zhao Tianyu1,2, Zhang Huyuan1, Yan Gengsheng3, Li Jin2   

  1. 1. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou 730000, China;
    2. Gansu Province Transportation Planning, Survey & Design Institute Co., Ltd. Lanzhou 730030, China;
    3. PowerChina Xibei Engineering Corporation Limited, Xi'an 710065, China
  • Received:2016-01-05 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by Research Project of PowerChina Limited(CHC-KJ-2009-12) and Science and Technology Program of Department of Transportation, Gansu Province(2013-10)

摘要:

盐渍土病害的发生与发展在很大程度上取决于土体内水、热变化状况。笔者以甘肃酒泉瓜州地区戈壁盐渍土为原型,利用硅半导体温度测量方式和时域反射技术(TDR)实时监测了盐渍土地层温度和湿度变化情况,分析了河西寒旱区盐渍土地层温湿度的变化模式。结果表明:研究区地层温度的日变化和年变化分别表现为一定周期的正弦曲线,地表处温度变化最剧烈;随深度增加温度变化幅度呈指数衰减,对环境气温的滞后效应也明显增加,日温度变化影响深度为40~50 cm,年温度变化影响深度为500~600 cm。因强烈的蒸降比和较深的地下水位,研究区地层基本无外界水分补充或损耗,地层湿度在一定时期内基本不发生明显变化,仅降水时期在浅表部有所波动。分析表明,研究区浅部100~150 cm深度范围内温度变化较大的地层中存在发生盐渍土病害的可能性,这也在很大程度上取决于地层的湿度情况,因此工程建设中应做好浅表层的防排水措施。

关键词: 河西, 寒旱区, 盐渍土, 温湿度, 变化模式

Abstract:

The occurrence and development of salty soil diseases mainly depends on the temperature and humidity in cold and arid regions. In order to comprehend the variation pattern of temperature and humidity for saline soil of Hexi corridor, Gobi saline soil in Guazhou, Gansu Province was selected to monitor by thermo-sensitive probe and time domain reflectometry (TDR) during winter and summer. Based on the monitoring data, we knew that the soil temperature presented as sinusoid variation by a daliy or annual cycle, and the shallow soil temperature varied greater than the deep soil. With the depth increasing, not only the temperature amplitude decayed exponentially, but also the hysteresis increased proportionally. At a certain depth, soil temperature came to almost constant, the depth for daily was 40-50 cm while the depth for annual was 500-600 cm. Because of the large evaporation precipitation ratio and distant groundwater, there was no water supplied or lost in soil, which brought about an invariable humidity for soil, only a microvariation in shallow by the rainfall. It was considered that there was a probability for the salty soil diseases occurred in depth of 100-150 cm, which depended on the humidity of soil largely, so the waterproof and drainage should be enhanced on ground surface.

Key words: Hexi Corridor, cold and arid regions, saline soil, temperature and humidity, variation pattern

中图分类号: 

  • TU457

[1] Lubelli B, van Hees R. Effectiveness of Crystallization Inhibitors in Preventing Salt Damage in Building Materials[J]. Journal of Cultural Heritage, 2007, 8(3):223-234.

[2] Marcin K. Modelling the Phase Change of Salt Dissolved in Pore Water:Equilibrium and Non-Equilibrium Approach[J]. Construction and Building Materials, 2010, 24(7):1119-1128.

[3] 黄立度, 席元伟, 李俊超. 硫酸盐渍土道路盐胀病害的基本特征及其防治[J]. 中国公路学报, 1997, 10(2):39-47. Huang Lidu, Xi Yuanwei, Li Junchao. The Feature and Prevention of the Highway Salt Dilating Distress in the Vitriol Salinized Soil Area[J]. China Journal of Highway and Transport, 1997, 10(2):39-47.

[4] 王小生, 章洪庆, 薛明, 等. 盐渍土地区道路病害与防治[J]. 同济大学学报, 2003, 31(10):1178-1182. Wang Xiaosheng, Zhang Hongqing, Xue Ming, et al. Road Disease and Treatment in Saline Soil Area[J]. Journal of Tongji University, 2003, 31(10):1178-1182.

[5] 张莎莎, 杨晓华, 戴志仁. 天然粗颗粒盐渍土多次冻融循环盐胀试验[J]. 中国公路学报, 2009, 22(4):28-32. Zhang Shasha, Yang Xiaohua, Dai Zhiren. Freezing-Thawing Cycles and Salt Expansion Test of Crude Coarse Grain Clay Salty Soil[J]. China Journal of Highway and Transport, 2009, 22(4):28-32.

[6] 张莎莎, 杨晓华, 张秋美. 天然粗颗粒盐渍土大型路堤模型试验研究[J]. 岩土工程学报, 2012, 34(5):842-847. Zhang Shasha, Yang Xiaohua, Zhang Qiumei. Large-Scale Model Tests on Embankment of Crude Coarse Grained Saline Soil[J]. Chinese Journal Geotechnical Engineering, 2012, 34(5):842-847.

[7] 陈肖柏, 邱国庆, 王雅卿, 等. 重盐土在温度变化时的物理化学性质和力学性质[J]. 中国科学(A辑), 1988(4), 429-438. Chen Xiaobo, Qiu Guoqing, Wang Yaqing, et al. The Physical, Chemical Mechanical Properties in the Deep Saline Soil When Temperature is Changing[J]. Journal of China Science (Volume A), 1988(2), 429-438.

[8] 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1):207-213. Li Yang, Wang Qing, Wang Tanhua. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1):207-213.

[9] 李宁, 徐彬, 陈飞熊. 冻土路基温度场、变形场和应力场的耦合分析[J]. 中国公路学报, 2006, 19(3):1-7. Li Ning, Xu Bin, Chen Feixiong. Coupling Analysis of Temperature, Deformation and Stress Field for Frozen Soil Roadbed[J]. China Journal of Highway and Transport, 2006, 19(3):1-7.

[10] 张彧, 房建宏, 刘建坤, 等. 察尔汗地区盐渍土水热状态变化特征与水盐迁移规律研究[J]. 岩土工程学报, 2012,34(7):1344-1348. Zhang Yu, Fang Jianhong, Liu Jiankun, et al. Variation Characteristics of Hydrothermal State and Migration Laws of Water and Salt in Qarhan Salt Lake Region[J]. Chinese Journal Geotechnical Engineering, 2012,34(7):1344-1348.

[11] 王洪葵, 王俊臣, 李劲松. 硫酸(亚硫酸)盐渍土盐一冻胀变形预报模型及与原位观测对比研究[J]. 东北水利水电, 2009(8):1-3. Wang Hongkui, Wang Junchen, Li Jinsong. Forecast Model of Salt-Frost Heaving Deformation of Sulfate (Sulfurous) Salty Soil and Its Contrast Study With In-Situ Observation[J]. Water Resources & Hydropower of Northeast, 2009(8):1-3.

[12] 杨霞, 赵逸舟, 罗继, 等. 阿克苏地区土壤温度特征分析[J]. 干旱区资源与环境, 2011, 25(12):97-101. Yang Xia, Zhao Yizhou, Luo Ji, et al. Characteristics of Soil Temperature Variations in Akesu[J]. Journal of Arid Land Resources and Environment, 2011, 25(12):97-101.

[13] 朱宝文, 张得元, 哈承智, 等. 青海湖北岸土壤温度变化特征[J]. 冰川冻土, 2010, 32(4):844-850. Zhu Baowen, Zhang Deyuan, Ha Chengzhi, et al. Variation Characteristics of the Ground Temperatures on the Northern Shore of the Qinghai Lake[J]. Journal of Glaciology and Geocryology, 2010, 32(4):844-850.

[14] 杜军, 李春, 廖健, 等. 拉萨近45年浅层土壤温度的变化特征[J]. 干旱区地理, 2007, 30(6):826-830. Du Jun, Li Chun, Liao Jian, et al. Soil Temperature Change at Shallow Layer in Lhasa from 1961 to 2005[J]. Arid Land Geography, 2007,30(6):826-830.

[1] 王清, 刘宇峰, 刘守伟, 张旭东, 彭玮, 李超月, 徐新川, 范建华. 吉林西部盐渍土多场作用下物质特性演化规律[J]. 吉林大学学报(地球科学版), 2017, 47(3): 807-817.
[2] 陈欢庆, 穆剑东, 王珏, 邓西里. 扇三角洲沉积储层特征与定量评价——以辽河西部凹陷某试验区于楼油层为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 14-24.
[3] 宿晓萍,王清,王文华,孙昊月. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1244-1253.
[4] 王生新, 柴寿喜, 王晓燕. 加筋条件和含水率对加筋土抗压强度和应力应变的影响[J]. J4, 2011, 41(3): 784-790.
[5] 石茜, 柴寿喜, 李敏, 魏丽. 潮湿环境中稻草的防腐效果及极限拉伸性能[J]. J4, 2011, 41(1): 200-206.
[6] 张凤奇, 庞雄奇, 王震亮, 李永新. 辽河西部凹陷复杂构造圈闭含油性主控因素及定量模式[J]. J4, 2009, 39(6): 991-997.
[7] 黄文彪, 孟元林, 卢双舫, 肖丽华, 高建军, 孙山, 王义军. 利用流体包裹体和盆地模拟分析油气成藏史--以鸳鸯沟洼陷西斜坡为例[J]. J4, 2009, 39(4): 650-655.
[8] 李长洪,张吉良,林清华,张永生,方雪松. 西藏扎布耶盐田盐渍土的改性配比试验[J]. J4, 2008, 38(2): 273-0278.
[9] 王俊臣,李劲松,王常明. 硫酸(亚硫酸)盐渍土单次盐胀和冻胀发育规律研究[J]. J4, 2006, 36(03): 410-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!