吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1799-1807.doi: 10.13278/j.cnki.jjuese.201606203

• 地质工程与环境工程 • 上一篇    下一篇

回灌与回扬物理过程的解析推导及灌压变化规律

刘国庆1, 吴时强1, 范子武1, 周志芳2, 谢忱1, 乌景秀1, 柳杨1   

  1. 1. 南京水利科学研究院, 南京 210029;
    2. 河海大学地球科学与工程学院, 南京 210098
  • 收稿日期:2016-03-20 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:刘国庆(1984-),男,在站博士后,主要从事地表与地下水运动模拟及水环境方面的研究,E-mail:gqliu@nhri.cn
  • 基金资助:
    国家自然科学基金项目(41402217);中国博士后基金项目(2014M561686);中央级公益性科研院所基本科研业务专项基金(Y115003)

Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure

Liu Guoqing1, Wu Shiqiang1, Fan Ziwu1, Zhou Zhifang2, Xie Chen1, Wu Jingxiu1, Liu Yang1   

  1. 1. Nanjing Hydraulic Research Institute, Nanjing 210029, China;
    2. School of Earth Science and Engineering, Hohai University, Nanjing 210098, China
  • Received:2016-03-20 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41402217), China Postdoctoral Fund (2014M561686) and the Basic Scientific Research Service of the Central Level Public Welfare Research Institute(Y115003)

摘要: 以回灌过程中渗透系数衰减模型为基础,推导了不同回扬次数的渗透系数解析表达式;将其应用于Theis公式,获得了考虑渗透系数衰减以及暂时性堵塞率条件下回灌与回扬物理过程中含水层压强的解析表达式,更准确地刻画了回灌与回扬的物理机制。计算结果表明:在连续回灌不回扬过程中,井内灌压增长符合指数曲线特征,而采取回扬措施后,由指数连续上升转变为间断式阶梯上升;回扬次数越多,灌压下降越明显,但灌压变化幅度随回扬次数的递增而减小。根据解析解定义的两种堵塞率的结果,可以实现利用实验判断不同成分回灌水源对含水层堵塞机理的分析,从而达到科学制定回灌水源标准的目的。

关键词: 渗透系数, 解析解, 回灌, 回扬, 堵塞, 地下水源热泵

Abstract: Based on attenuation model of hydraulic conductivity during the artificial recharge, the hydraulic conductivity analytic expression was derived. The aquifer pressure analytical expression in recharge and periodic backwashing physical processes with consideration of attenuation of hydraulic conductivity and temporary clogging rate, by application of hydraulic conductivity analytic expression on Theis formula. The physical mechanism of recharge and periodic backwashing can be more accurately described. The calculation results show that the wells recharge pressure growth in line with exponential curves in a continuous process of recharge without periodic backwashing, but the wells recharge pressure growth from the continuous rise in the index converted into intermittent stepped up with periodic backwashing. The more times periodic backwashing, more obvious recharge pressure decreased. But, with the increasing number of periodic backwashing, variation magnitude of recharge pressure is decreased. Based on the result of two blocking rate of analytical solution, the clogging mechanism in different components of the recharge water can be analyzed by using the experiments, which can guide to determine the standards of the recharge water sources.

Key words: hydraulic conductivity, analytical solution, recharge, periodic backwashing, clogging, groundwater source heat pumps

中图分类号: 

  • P641.25
[1] 周彦章, 周志芳, 吴蓉,等. 地源热泵系统地下水热量运移阶段特性模拟研究[J]. 水文地质工程地质, 2011, 38(5): 128-134. Zhou Yanzhang, Zhou Zhifang, Wu Rong, et al. Simulation Study of the Stage-Characteristics of Groundwater Thermal Transport in Aquifer Medium for GWHP System[J]. Hydrogeology & Engineering Geology, 2011, 38(5): 128-134.
[2] Silliman S E. The Importance of the Third Dimension on Transport Through Saturated Porous Media: Case Study Based on Transport of Particles[J]. Journal of Hydrology,1996, 179(1): 181-195.
[3] Silliman S E. Particle Transport Through Two-Dimen-sional, Saturated Porous Media: Influence of Physical Structure of the Medium[J]. Journal of Hydrology, 1995, 167(1): 79-98.
[4] 赵军, 刘泉声, 张程远. 水源热泵回灌困难颗粒阻塞试验研究[J]. 岩石力学与工程学报, 2012, 31(3): 604-609. Zhao Jun, Liu Quansheng, Zhang Chengyuan.Experimental Study of Particles Clogging in Ground Source Heat Pump[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 604-609.
[5] 黄修东, 束龙仓, 刘佩贵, 等. 注水井回灌过程中堵塞问题的试验研究[J]. 水利学报, 2009, 40(4): 430-434. Huang Xiudong, Shu Longcang, Liu Peigui, et al. Experimental Study on Injection Wells During the Clogging of Recharge[J]Hydraulic Engineering, 2009, 40(4): 430-434.
[6] 赵忠仁. 回灌井暂时性堵塞物的形成及其排除过程变化机制分析[J]. 水文地质工程地质, 1988,11(5): 39-42. Zhao Zhongreng. Mechanism of the Formation of a Temporary Blockage of Recharge Wells and Exclude the Change Process[J]. Hydrogeology & Engineering Geology, 1988,11(5): 39-42.
[7] 路莹, 杜新强, 迟宝明, 等. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. 吉林大学学报(地球科学版), 2011, 41(2): 448-454. Lu Ying, Du Xinqiang, Chi Baoming, et al. The Porous Media Clogging due to Suspended Solid During the Artificial Recharge of Groundwater[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(2): 448-454.
[8] Santos A, Bedrikovetsky P. A Stochastic Model for Particulate Suspension Flow in Porous Media[J]. Transport in Porous Media, 2006, 62(1): 23-53.
[9] Weroński P, Walz J Y, Elimelech M. Effect of De-pletion Interactions on Transport of Colloidal Particles in Porous Media[J]. Journal of Colloid and Interface Science, 2003, 262(2): 372-383.
[10] 姜桂华, 廖资生, 徐凌云, 等. 人工微生物脱氮过程中含水层堵塞问题的实验研究[J]. 长春科技大学学报,1998, 28(2): 186-190. Jiang Guihua, Liao Zisheng, Xu Lingyun, et al. The Experimental Study on Clogging of Aquifer During the Treatment of Nitric Pollution by Syntheticmicroor Ganism[J]. Journal of Changchun Universsity of Science and Technology, 1998, 28(2): 186-190.
[11] 路莹, 杜新强, 范伟, 等. 地下水人工回灌过程中微生物堵塞的预测[J]. 湖南大学学报(自然科学版),2012, 39(1): 77-80. Lu Ying, Du Xiniang, Fan Wei, et al. Prediction of Microbial Clogging in Groundwater Artificial Recharge[J]. Journal of Hunan University(Natural Sciences), 2012, 39(1): 77-80.
[12] Baveye P, Vandevivere P, Hoyle B L, et al. En-vironmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(2): 123-191.
[13] Hoffmann A, Gunkel G. Bank Filtration in the Sandy Littoral Zone of Lake Tegel (Berlin): Structure and Dynamics of the Biological Active Filter Zone and Clogging Processes[J]. Limnologica-Ecology and Management of Inland Waters, 2011, 41(1): 10-19.
[14] Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. In-terrelationships Between Biological, Chemical, and Physical Processes as an Analog to Clogging in Aquifer Storage and Recovery (Asr) Wells[J]. Water Research, 2000, 34(7): 2110-2118.
[15] Oberdorfer J A, Peterson F L. Waste‐Water In-jection: Geochemical and Biogeochemical Clogging Processes[J]. Ground Water, 1985, 23(6): 753-761.
[16] Vigneswaran S, Suazo R B. A Detailed Investigation of Physical and Biological Clogging During Artificial Recharge[J]. Water, Air, and Soil Pollution, 1987, 35(1/2): 119-140.
[17] Hutchinson A S. Estimation and Quantification of In-jection Well Clogging, Tucson, Arizona[J]. Estimation & Quantification of Injection Well Clogging Tucson Arizona, 1993,23(2):34-45.
[18] Pavelic P, Dillon P J, Barry K E, et al. Water Qua-lity Effects on Clogging Rates During Reclaimed Water Asr in a Carbonate Aquifer[J]. Journal of Hydrology, 2007, 334(1): 1-16.
[19] Vandevivere P, Baveye P, Lozada D S, et al. Mic-robial Clogging of Saturated Soils and Aquifer Materials: Evaluation of Mathematical Models[J]. Water Resources Research, 1995, 31(9): 2173-2180.
[20] 何满潮, 刘斌, 姚磊华, 等. 地热单井回灌渗流场理论研究[J]. 太阳能学报, 2003, 24(2): 197-200. He Manchao, Liu Bin, Yao Leihua, et al.Study on the Theory of Seepage Field for Geothermal Single Well Reinjectong[J]. Acta Energiae Solaris Sinica, 2003, 24(2): 197-200.
[21] 何满潮, 刘斌, 姚磊华, 等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版),2002, 32(4): 374-377. He Manchao, Liu Bin, Yao Leihua, et.al.Study on Hydraulic Conductivity During Geothermal Reinjection[J].Journal of Jilin University(Earth Science Edition), 2002, 32(4): 374-377.
[22] 倪龙, 马最良. 地下水地源热泵回灌分析[J]. 暖通空调,2006, 36(6): 84-90. Ni Long, Ma Zuiliang.Analysis of Injection for Groundwater Source Heat Pump Systems[J].Journal of HV&AC, 2006, 36(6): 84-90.
[23] 李璐, 卢文喜, 杜新强, 等. 人工回灌过程中含水层堵塞试验研究[J].人民黄河,2010, 32(6): 77-78. Li Lu, Lu Wenxi, Du Xinqiang, et al. Artificial Aquifer Recharge Process Blockage Experimental Research[J]. Yellow River, 2010, 32(6): 77-78.
[24] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015,45(2): 573-583. Su Xiaosi,Meng Xiangfei,Zhang Wenjing,et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University(Earth Science Edition), 2015,45(2): 573-583.
[25] 孙美华, 张金霞, 魏建中. 地下水源热泵重力回灌的回扬实验研究[J]. 煤气与热力, 2009, 29(8): 1-4. Sun Meihua, Zhang Jinxia, Wei Jianzhong. Experimental Research on Pump Lifting from Gravity Artificial Recharge Well of Underground Water Source Heat Pump System[J]. Gas&Heat, 2009, 29(8): 1-4.
[26] 陈崇希, 林敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. Chen Chongxi, Lin Min. Groundwater Dynamics[M]. Wuhan: China University of Geosciences Press, 1999.
[1] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[2] 苏小四, 孟祥菲, 张文静, 石旭飞, 何海洋. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015, 45(2): 573-583.
[3] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[4] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[5] 马荣,石建省,刘继朝. 人工内分泌网络模型在水文地质参数研究中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 914-921.
[6] 张庆,张延军,周炳强,黄贤龙,于子望,孙永泉. 天然冷源对地下水源热泵的影响规律[J]. 吉林大学学报(地球科学版), 2013, 43(2): 537-543.
[7] 石旭飞,张文静,王寒梅,焦珣,何海洋. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报(地球科学版), 2013, 43(1): 220-227.
[8] 林学钰, 张文静, 何海洋, 石旭飞, 王寒梅, 焦珣. 人工回灌对地下水水质影响的室内模拟实验[J]. J4, 2012, 42(5): 1404-1409.
[9] 苏小四, 谷小溪, 孟婧莹, 张文静, 王寒梅, 焦珣. 人工回灌条件下多组分溶质的反应迁移模拟[J]. J4, 2012, 42(2): 485-491.
[10] 王子佳, 杜新强, 冶雪艳, 宋晓明, 张加双, 高翠萍. 城市雨水地下回灌过程中悬浮物表面堵塞规律[J]. J4, 2012, 42(2): 492-498.
[11] 汤井田, 辛会翠, 王冉. 点电源下复杂角域地形影响及校正[J]. J4, 2012, 42(1): 254-261.
[12] 路莹, 杜新强, 迟宝明, 杨悦锁, 李胜涛, 王子佳. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. J4, 2011, 41(2): 448-454.
[13] 胡继华,张延军,于子望,吴刚,杨潇瀛,倪福全. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. J4, 2008, 38(6): 992-0998.
[14] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644-0648.
[15] 高淑琴,苏小四,杜新强,谢轶,齐素文. 大庆西部地下水位降落漏斗区水资源人工调蓄方案[J]. J4, 2008, 38(2): 261-0267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!