吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 534-541.doi: 10.13278/j.cnki.jjuese.201702202

• 地质工程与环境工程 • 上一篇    下一篇

基于CFD的高能射流式液动冲击器活塞与缸体密封特性研究

张鑫鑫, 彭枧明, 孙铭泽, 吴冬宇   

  1. 吉林大学建设工程学院/国土资源部复杂条件钻进技术开放研究实验室, 长春 130026
  • 收稿日期:2016-06-04 出版日期:2017-03-26 发布日期:2017-03-26
  • 通讯作者: 彭枧明(1975),男,教授,博士生导师,主要从事多工艺冲击回转钻进技术研究,E-mail:pengjm@jlu.edu.cn E-mail:pengjm@jlu.edu.cn
  • 作者简介:张鑫鑫(1990),男,博士研究生,主要从事多工艺冲击回转钻探工艺及机具研究,E-mail:zxx14@mails.jlu.edu.cn
  • 基金资助:
    国土资源公益性行业科研专项(201311112)

Study on the Sealing Characteristics Between the Piston and Cylinder in the High-Energy Liquid-Jet Hammer Based on CFD Method

Zhang Xinxin, Peng Jianming, Sun Mingze, Wu Dongyu   

  1. College of Construction Engineering/Laboratory of Technology for Drilling Under Complex Condition of Ministry of Land and Resources, Jilin University, Changchun 130026, China
  • Received:2016-06-04 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by Public Science and Technology Research Funds Projects of Ministry of Land and Resources of China(201311112)

摘要: 通过计算流体动力学分析与实验室测试,对SC-86H型高能射流式液动冲击器活塞与缸体密封特性进行研究,分析了活塞密封段长度、环状间隙尺寸、活塞往复运动速度、角速度以及活塞外表面螺旋槽螺距与半径等参数对射流式冲击器前后腔之间泄漏量的影响。结果表明:活塞密封段长度、环状间隙尺寸、角速度以及活塞表面螺旋槽螺距均对射流式液动冲击器性能影响较小;活塞运动速度与泄漏量近似成正比例关系;随着活塞螺旋槽半径的增大,泄漏量会明显增大。活塞回程与冲程初期阶段,活塞运动速度较小,活塞处瞬时泄漏量占进入缸体前后腔流体流量的比例较大,使活塞无法快速加速运动,尤其是当活塞杆直径较大时,回程阶段泄漏量对活塞运动的影响更显著,导致冲击器工作性能大幅下降,甚至无法工作。

关键词: 计算流体动力学, 高能射流式液动冲击器, 活塞, 缸体, 泄漏量

Abstract: The sealing characteristics of the piston and cylinder in the SC-86 H high-energy liquid-jet hammer were studied based on computational fluid dynamics (CFD) analysis and laboratory tests. The effect on the leakage between the front chamber and rear chamber of the liquid-jet hammer were analyzed from the aspects of sealing length, annular gap, reciprocating motion velocity, angular velocity of the piston and the pitch and radius of the spiral groove on the outside surface of the piston. Results showed that little influence on the performance of the liquid-jet hammer was caused by the varying of sealing length, annular gap, angular velocity of the piston and the pitch of the spiral groove on the outside surface of the piston; The leakage between the front chamber and rear chamber is nearly proportional to the reciprocating motion velocity of the piston; While the radius of the spiral groove increased, the leakage increased remarkably; At the beginning of the forward and backward strokes, as the reciprocating velocity of the piston was quite slow, the leakage occupied a large proportion of the total liquid flow into the front chamber and rear chamber, instantaneously, the accelerated motion of the piston was influenced, especially when the diameter of the piston rod was larger to some extent, the piston would not be able to move backward easily, the performance of the liquid-jet hammer will got worse and even was unable to work.

Key words: computational fluid dynamics(CFD), high-energy liquid-jet hammer, piston, cylinder, leakage

中图分类号: 

  • TE242.7
[1] 菅志军,殷琨,蒋荣庆,等. 油气勘探钻井用液动射流式冲击器的研究与应用[J]. 世界地质,1998,17(4):88-92. Jian Zhijun, Yin Kun, Jiang Rongqing, et al. The Research on Hydro-Efflux DTH Hammer Applying to Oil and Gas Exploration Drilling[J]. Global Geology, 1998, 17(4):88-92.
[2] Deulsch U, Marx C, Rischmuller H. Evaluation of Hammer Drilling Potential for KTB in Supper-Deep Drilling and Deep Geophysical Sounding[M]. Heidelberg:Spring-Veerlag, 1995:310-320.
[3] 朴成哲,殷琨,蒋荣庆,等.KSC-127型射流式液动锤应用于大陆科学深钻的试验研究[J]. 世界地质,2000,19(3):295-298. Piao Chengzhe,Yin Kun,Jiang Rongqing,et al. Experimental Research on Application of KSC-127 Fluid Efflux Hammer in CSDP[J]. Global Geology, 2000, 19(3):295-298.
[4] 殷其雷,殷琨,柳鹤,等.潜孔锤反循环钻进技术在某水电站的试验应用[J]. 吉林大学学报(地球科学版),2014,44(3):961-968. Yin Qilei, Yin Kun, Liu He, et al. Application Test of DTH Hammer Reverse Circulation Drilling Technique in a Hydropower Station[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3):961-968.
[5] 王人杰, 蒋荣庆. 液动冲击回转钻进技术[M]. 北京:地质出版社,1988:97-104. Wang Renjie, Jiang Rongqing.Hydraulically Impacting-Rotary Drilling Technique[M]. Beijing:Geological Publishing House, 1988:97-104.
[6] 王福平,李鹏,李国琳,等. 基于LS-Dyna的高能射流式液动冲击器活塞杆回程应力分析[J]. 吉林大学学报(地球科学版),2016, 46(5):1482-1489. Wang Fuping, Li Peng, Li Guolin, et al. Stress Analysis of the Piston Rod Return in High-Energy Liquid-Jet Hammer Based on LS-Dyna[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5):1482-1489.
[7] 殷琨,王茂森,彭枧明,等.冲击回转钻进[M]. 北京:地质出版社,2010:60-77. Yin Kun, Wang Maosen, Peng Jianming, et al. Percussive-Rotary Drilling[M]. Beijing:Geological Publishing House, 2010:60-77.
[8] 菅志军,殷琨,蒋荣庆,等. 增大液动射流式冲击器单次冲击功的试验研究[J]. 长春科技大学学报,2000,30(3),303-306. Jian Zhijun, Yin Kun, Jiang Rongqing, et al. The Research on Increasing Impacting Energy of Hydro-Efflux Hammer[J]. Journal of Changchun University of Science and Technology, 2000, 30(3):303-306.
[9] 王清岩. 基于虚拟样机技术的动压反馈式液动冲击器结构设计与动态仿真分析[D]. 长春:吉林大学,2008:127-129. Wang Qingyan. Structure Design and Dynamic Simulation of Hydrokinetic Hammer with Dynamic Pressure Feedback Using Virtual Prototyping Technology[D]. Changchun:Jilin University, 2008:127-129.
[10] 杨晓宗.几何参数对螺旋密封性能影响的研究[D].上海:华东理工大学,2014:1-23. Yang Xiaozong. The Study of Influence on the Sealing Performance of Helical Seal with Geometric Parameters Change[D]. Shanghai:East China University of Science and Technology, 2014:1-23.
[11] Netzel J P, Volden Dong. Upstream Pumping:A New Concept in Mechanical Sealing Technology[J]. Lubrication Engineering, 1990, 45(4):213-217.
[12] Mc Grew J M, Mc Hugh J D. Analysis and Test of the Screw Seal in Laminar and Turbulent Operation[J]. The General Electric Advanced Technology Laboratories. 1963, 63(6):368-374.
[13] Asok S P, Sankaranarayanasamy K, Sundararajan T, et al. Pressure Drop and Cavitation Investigations on Static Helical-Grooved Square, Triangular and Curved Cavity Liquid Labyrinth Seals[J]. Nuclear Engineering and Design, 2011, 241(3):843-853.
[14] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社,2004:63-159. Wang Fujun. The Analysis of Computational Fluid Dynamics:CFD Softw are Principle and Application[M]. Beijing:Tsinghua University Press, 2004:63-159.
[15] Mousavian S M, Najafi A F. Numerical Simulations of Gas-Liquid-Solid Flows in a Hydro Cyclone Separator[J]. Arch Appl Mech, 2009, 79:395-409.
[16] 周梓荣,彭浩舸,曾曙林,等.环形间隙中泄漏流量的影响因素研究[J].润滑与密封,2005,30(1):7-9. Zhou Zirong, Peng Haoge, Zeng Shulin, et al. Research on the Influence Factors of Leakage in Annular Clearance Seals[J]. Lubrication Engineering, 2005,30(1):7-9.
[17] 塔鲁达纳夫斯基. 非接触密封[M].北京:机械工业出版社,1986:8-12. Trutnovsky K. Non-Contact Sealing[M]. Beijing:China Machine Press, 1986:8-12.
[18] Fluent User's Guide[Z]. Release 6.3.26, Ansys Inc., USA, 2006.
[19] Nagano Y, Itazu Y Renormalization Group Theory for Turbulence:Eddy-Viscosity Type Model Based on an Iterative Averaging Method[J]. Physics of Fluids, 1997, 9:143-153.
[1] 王福平, 李鹏, 李国琳, 彭枧明. 基于Ls-Dyna的高能射流式冲击器活塞杆回程应力分析[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1482-1489.
[2] 张永光, 彭枧明, 柳鹤, 殷其雷, 范黎明. 射流式液动锤活塞回程缓冲机构[J]. J4, 2010, 40(6): 1415-1418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!