吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 589-596.doi: 10.13278/j.cnki.jjuese.201702302
高秀鹤, 黄大年, 孙思源, 于平
Gao Xiuhe, Huang Danian, Sun Siyuan, Yu Ping
摘要: 采用协克里金法处理重力或重力梯度数据反演地下3D密度时,岩脉倾角的先验信息是否合理决定了反演结果的好坏。为了使协克里金法在先验信息不充足时也能得到理想的反演效果,我们提出角度扫描的方法来获取岩脉倾角信息:在保持其他反演参数不变的前提下,假设模型的倾斜角度未知,每次引入不同角度进行协克里金反演,再根据先验信息剔除不合理密度值,得到密度分布;统计预测数据与测量数据拟合残差的标准差,根据极小值对应的角度估计岩脉的倾角。本文基于4种不同倾斜角度(0°,45°,90°,135°)岩脉模型的重力梯度垂直分量Tzz验证方法有效性,都能够准确地估计出岩脉倾斜角度。这使得协克里金法在岩脉倾角未知的情况下,也能得到较好的反演结果。
中图分类号:
[1] 袁园,黄大年,余青露,等. 全张量重力梯度数据误差分析及补偿[J].吉林大学学报(地球科学版),2014, 44(3):1003-1011. Yuan Yuan, Huang Danian, Yu Qinglu, et al.Error Analysis and Compensation of Full Tensor Gravity Gradiometer Measurements[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):1003-1011. [2] Geng M, Huang D, Yang Q, et al. 3D Inversion of Air-borne Gravity-Gradiometry Data Using Cokriging[J]. Geophysics, 2014, 79(4), G37-G47. [3] Asli M, Marcotte D, Chouteau M. Direct Inversion of Gravity Data by Cokriging[C]//Kleingeld W, Krige D. Proceedings of the 6th International Geostatistics Congress. 2000:64-73. [4] Gloaguen E, Marcotte D, Chouteau M, et al. Borehole Radar Velocity Inversion Using Cokriging and Cosimulation[J]. Journal of Applied Geophysics,2005, 57(4), 242-259. [5] Shamsipour P, Chouteau M, Marcotte D. 3D Stochastic Inversion of Magnetic Data[J]. Journal of Applied Geophysics, 2011, 73(4), 336-347. [6] Shamsipour P, Marcotte D, Chouteau M, Rivest M, et al. 3D Stochastic Gravity Inversion Using Nonstationary Covariances[J]. Geophysics, 2013, 78(2),G15-G24. [7] Shamsipour P, Marcotte D, Chouteau M, et al. 3D Stochastic Inversion of Gravity Data Using Cokriging and Cosimulation[J]. Geophysics, 2010, 75(1), I1-I10. [8] Chasseriau P, Chouteau M. 3D Gravity Inversion Using a Model of Parameter Covariance[J]. Journal of Applied Geophysics, 2003, 52(1), 59-74. [9] Higdon D, Swall J, Kern J. Non-Stationary Spatial Modeling[J]. Bayesian statistics, 1999, 6(1), 761-768. [10] Paciorek C J, Schervish M J. Spatial Modelling Using a New Class of Nonstationary Covariance Functions[J]. Environmetrics, 2006, 17(5), 483-506. [11] Hou Z, Wei X, Huang D, et al. Full Tensor Gravity Gradiometry Data Inversion:Performance Analysis of Parallel Computing Algorithms[J]. Applied Geophysics, 2015, 12(3), 292-302. [12] Ennen C. Mapping Gas-Charged Fault Blocks Around the Vinton Salt Dome, Louisiana Using Gravity Gradiometry Data[D]. Houston:University of Houston, 2012. |
[1] | 袁园,黄大年,余青露,耿美霞. 全张量重力梯度数据误差分析及补偿[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1003-1011. |
|