吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1784-1794.doi: 10.13278/j.cnki.jjuese.201706201

• 地质工程与环境工程 • 上一篇    下一篇

高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析

雷华阳1,2, 王铁英1, 张志鹏1, 卢海滨1, 刘敏1   

  1. 1. 天津大学土木工程系, 天津 300072;
    2. 天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072
  • 收稿日期:2017-03-07 出版日期:2017-11-26 发布日期:2017-11-26
  • 作者简介:雷华阳(1974),女,教授,博士生导师,主要从事岩土工程的教学与科研工作,E-mail:Leihuayang74@163.com
  • 基金资助:
    天津市科技兴海项目(KJXH2013-15)

Macro-and Meso-Analysis of Newly Formed Highly Viscous Dredger Fill Under Vacuum Preloading Using Particle Flow Theory

Lei Huayang1,2, Wang Tieying1, Zhang Zhipeng1, Lu Haibin1, Liu Min1   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
    2. Key Laboratory of Coast Civil Structure Safety of Education Ministry, Tianjin University, Tianjin 300072, China
  • Received:2017-03-07 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by Technology and Sea Projiect of Tianjin (KJXH2013-15)

摘要: 为了从宏观和微观角度探讨颗粒组成对淤堵层形成机理和加固效果的影响规律,依托天津某新近吹填造陆工程,先进行直排式真空预压法室内模型试验,然后基于颗粒流理论和PFC2D程序,在解决模拟过程中颗粒级配和孔隙比的二维转换、排水边界的等效模拟、真空渗流场的施加等问题后,对模型进行有效的模拟计算,进而将结果推广,开展了不同颗粒组成吹填土真空预压试验的颗粒流模拟,总结了排水速率变化及颗粒运移规律。结果表明:对吹填土真空预压过程进行二维颗粒流数值模拟是有效可行的;真空预压过程中细颗粒沿渗透路径迁移,在沿途滞留,导致渗透路径变短变窄,从而形成淤堵层;对于高黏性新近吹填淤泥,在相同真空荷载作用下,黏粒质量分数越大,初期排水速率增长越快,并且随着土体不均匀系数的提高,淤堵层变得易于形成且致密,排水速率衰减越快;粉粒质量分数越大,土体孔隙率变化越均匀,尤其当粉粒质量分数大于黏粒质量分数时,真空预压加固效果有明显改善。

关键词: 新近吹填土, 真空预压, 颗粒流, 颗粒组成, 淤堵, 排水速率

Abstract: To analyze the impact of particle composition on reinforcement of dredger fill under vacuum preloading from the aspect of meso-scale mechanism, we carried out a laboratory vacuum preloading model test on one group of samples from Binhai New Area in Tianjin using the particle flow method for simulation; then simulated six groups of samples with different grain size distributions under the same loading condition. The changes of drainage rate and deformation were analyzed. The results show that the two-dimensional particle flow method is effective for the simulation of laboratory vacuum preloading tests. Fine particles penetrated along the migration path with some detained along the way so that the penetration path became narrower and shorter. As for the newly-dredged fill with high clay content under the same loading condition, the initial drainage rate grew faster with the increase of clay content, and decayed faster with the increase of uneven coefficient; while the higher the silt content, the more uniform the porosity of soil at different position, especially, when the silt content was higher than the clay content, and the effecter of vacuum preloading.

Key words: newly-dredged fill, vacuum preloading, particle flow, granulometric composition, clogging, drainage rate

中图分类号: 

  • TU43
[1] 赵林,郑义,毛国柱,等. 天津围海造陆区吹填土氮磷的分布特征[J]. 吉林大学学报(地球科学版),2015,45(1):255-264. Zhao Lin, Zheng Yi, Mao Guozhu, et al. Spatial Distribution of Nitrogen and Phosphorus in Dredger Fill at Tianjin Reclamation Land Area[J]. Journal of Jilin University(Earth Science Edition),2015,45(1):255-264.
[2] 武亚军,杨建波,张孟喜. 真空加载方式对吹填流泥加固效果及土颗粒移动的影响研究[J]. 岩土力学,2013, 34(8):2129-2135. Wu Yajun, Yang Jianbo, Zhang Mengxi. Study of Impact of Vacuum Loading Mode on Dredger Fill Flow Mud Consolidation Effect and Soil Particles Moving[J]. Rock and Soil Mechanics, 2013,34(8):2129-2135.
[3] 鲍树峰,娄炎,董志良,等. 新近吹填淤泥地基真空固结失效原因分析及对策[J].岩土工程学报,2014,36(7):1350-1359. Bao Shufeng, Lou Yan, Dong Zhiliang, et al. Causes and Countermeasures for Vacuum Consolidation Failure of Newly-Dredged Mud Foundation[J]. Chinese Journal of Geotechnical Engineering, 2014,36(7):1350-1359.
[4] 关云飞, 唐彤芝, 陈海军, 等. 超软土地基真空预压浅层加固现场试验研究[J]. 岩土工程学报, 2011, 33(增刊1):97-101. Guan Yunfei, Tang Tongzhi, Chen Haijun, et al. Field Tests on Shallow Treatment of Super-Soft Ground by Vacuum Preloading Method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup.1):97-101.
[5] 董志良, 张功新, 周琦, 等. 天津滨海新区吹填造陆超软土浅层加固技术研发及应用[J]. 岩石力学与工程学报,2011, 30(5):1306-1312. Dong Zhiliang, Zhang Gongxin, Zhou Qi. Research and Application of Improvement Technology of Shallow Ultra-Soft Soil Formed by Dredged in Tianjin Binhai New Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5):1073-1080.
[6] 董志良, 张功新, 莫海鸿, 等. 超软弱土浅表层快速加固方法及成套技术:中国, 200810026168.4[P]. 2008-07-23. Dong Zhiliang, Zhang Gongxin, Mo Haihong, et al. The Improvement Method and Technology of Ultra-Soft Soil:China, 200810026168[P]. 2008-07-23.
[7] 董志良, 周琦, 张功新, 等. 天津滨海新区浅层超软土加固技术现场对比试验[J]. 岩土力学, 2012, 33(5):1073-1080. Dong Zhiliang, Zhou Qi, Zhang Gongxin. Field Comparison Test of Reinforcement Technology of Shallow Ultra-Soft Soil in Tianjin Binhai New Area[J]. Rock and Soil Mechanics, 2012, 33(5):1073-1080.
[8] 颜永国.真空荷载下不同颗粒级配软土真空度传递规律试验研究[J].水运工程,2010(10):109-112. Yan Yongguo. Experimental Study on Vacuum Degree Transfer Law of Soft Clay of Different Grain Size Grading Under Vacuum Preloading[J]. Port & Waterway Engineering, 2010(10):109-112.
[9] 陈平山,董志良,张功新. 新吹填淤泥浅表层加固中"土桩"形成机理及数值分析[J]. 水运工程,2012,01:158-163. Chen Pingshan, Dong Zhiliang, Zhang Gongxin. Mechanism and Numerical Simulation of the "Soil Piles" in the Fresh Hydraulic Mud Fill Treated by Surface-Layer Improvement Technique[J]. Port & Waterway Engineering, 2012,1:158-163.
[10] 颜永国,董志良,杨昌斌,等. 颗粒级配对真空预压法处理吹填土效果影响试验研究[J]. 岩土工程学报,2011,33(11):1775-1779. Yan Yongguo, Dong Zhiliang, Yang Changbin, et al. Experimental Study on Effect of Grain Size Distribution on Improvement of Dredger Fill[J]. Chinese Journal of Geotechnical Engineering, 2011,33(11):1775-1779.
[11] 阮昆.真空预压法在吹填陆域软基工程中的加固效果研究[D].武汉:武汉理工大学,2014. Ruan Kun. The Vacuum Preloading Method in the Project of the Reclaimed Soil Soft Foundation Reinforcement Effect Research[D]. Wuhan:Wuhan University of Technology, 2014.
[12] 习志雄. 真空预压法处理吹填淤泥质软土地基的颗粒流数值模拟[D].北京:北京交通大学,2010. Xi Zhixiong. The PFC Numerical Simulation of Vacuum Preloading in Improving Reclamation Sludge[D]. Beijing:Beijing Jiaotong University, 2010.
[13] 宋晶. 分级真空预压法加固高粘性吹填土的模拟试验与三维颗粒流数值分析[D].长春:吉林大学,2011. Song Jing. Laboratory Simulation Test and PFC3D Numerical Analysis of High Clay Dredger Fill in the Consolidation Process of Step Vacuum Preloading[D]. Changchun:Jilin University,2011.
[14] 武亚军,覃萍,杨建波. 真空荷载下超软土固结试验及土颗粒移动数值模拟研究[J]. 水运工程,2013,09:116-122. Wu Yajun, Qin Ping, Yang Jianbo. Consolidation Test and Numerical Simulation of Particles Movement to Ultra-Soft Soil Bearing Vacuum Load[J]. Port & Waterway Engineering, 2013,09:116-122.
[15] 邹燃. 天津滨海新区吹填土固结前期微观特征及沉降过程模拟研究[D].长春:吉林大学,2013. Zou Ran. Study on the Microscopic Feature and Process Simulation of Previous Settlement Consolidation of Dredger Fill in Binhai New Area of Tianjin[D]. Changchun:Jilin University, 2013.
[16] 徐国建,沈扬,刘汉龙. 孔隙率、级配参数对粉土双轴压缩性状影响的颗粒流分析[J]. 岩土力学,2013,34(11):3321-3328. Xu Guojian, Shen Yang, Liu Hanlong. Analysis of Particle Flow for Impacts of Granular Parameters and Porosity on Silt's Properties under Biaxial Compression[J]. Rock and Soil Mechanics, 2013,34(11):3321-3328.
[17] 李坤蒙,李元辉,徐帅,等. PFC~(2D)数值计算模型微观参数确定方法[J]. 东北大学学报(自然科学版),2016,37(4):563-567. Li Kunmeng, Li Yuanhui, Xu Shuai, et al. Method to Determine Microscopic Parameters of PFC2D Numerical Model[J]. Journal of Northeastern University, 2016,37(4):563-567.
[18] 郑刚,戴轩,张晓双. 地下工程漏水漏砂灾害发展过程的试验研究及数值模拟[J]. 岩石力学与工程学报,2014,33(12):2458-2471. Zheng Gang, Dai Xuan, Zhang Xiaoshuang. Experimental Study and Numerical Simulation of Leaking Process of Sand and Water in Underground Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(12):2458-2471.
[1] 付晓飞,肖建华,孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1): 25-37.
[2] 吴谦,王常明,马栋和,宋朋燃. 辽西黄土陡坡的冲刷破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1563-1571.
[3] 沈宇鹏, 冯瑞玲, 余江, 刘辉. 增压式真空预压处理软基的加固机理[J]. J4, 2012, 42(3): 792-797.
[4] 苑晓青, 王清, 孙铁, 夏玉斌, 陈慧娥, 宋晶. 分级真空预压法加固吹填土过程中孔隙分布特征[J]. J4, 2012, 42(1): 169-176.
[5] 宋晶, 王清, 夏玉斌, 陈允进, 陈慧娥, 苑晓青. 真空预压处理高黏粒吹填土的物理化学指标[J]. J4, 2011, 41(5): 1476-1480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!