吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1819-1828.doi: 10.13278/j.cnki.jjuese.201706205

• 地质工程与环境工程 • 上一篇    下一篇

长白山玄武岩区地热异常区遥感识别

闫佰忠1,2,3, 邱淑伟1,2,3, 肖长来3, 梁秀娟3   

  1. 1. 河北地质大学水资源与环境学院, 石家庄 050031;
    2. 河北省水资源可持续利用与开发重点实验室, 石家庄 050031;
    3. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021
  • 收稿日期:2017-03-25 出版日期:2017-11-26 发布日期:2017-11-26
  • 通讯作者: 肖长来(1962-),男,教授,博士生导师,主要从事水资源与水环境方面的研究,E-mail:xcl2822@126.com E-mail:xcl2822@126.com
  • 作者简介:闫佰忠(1988-),男,讲师,博士,主要从事水资源与水环境、地下水方面的研究,E-mail:jluybz@126.com
  • 基金资助:
    国家自然科学基金项目(41572216);吉林省地勘基金项目(地勘2014-13);河北省教育厅自然青年项目(QN2017026);河北地质大学博士科研启动基金项目(BQ2017011)

Potential Geothermal Fields Remote Sensing Identification in Changbai Mountain Basalt Area

Yan Baizhong1,2,3, Qiu Shuwei1,2,3, Xiao Changlai3, Liang Xiujuan3   

  1. 1. School of Water Resources & Environment, Hebei GEO University, Shijiazhuang 050031, China;
    2. Hebei Province Key Laboratory of Sustained Utilization & Development of Water Resources, Shijiazhuang 050031, China;
    3. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China
  • Received:2017-03-25 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41572216), Geological Exploration Fund Projects of Jilin Province (2014-13), Youth Foundation of Hebei Province Department (QN2017026) and Scientific Research Initiation Funds for PhD Scholars (BQ2017011)

摘要: 利用Landsat TM5遥感影像多光谱和热红外数据,对长白山玄武岩区地表温度场进行了反演。在此基础上,综合分析了研究区地表温度场、温泉和地热井分布特征、布格重力场及磁场4个因子,采用判别分析方法建立并验证了判别函数,对研究区地热异常区进行了识别。研究结果表明:研究区地表温度异常区主要分布在长白山天池火山口周围,此外,在区内3个中生代沉积盆地(抚松盆地、松江盆地和长白盆地)也有孤立状的高温区域分布,地表温度异常像素所占比例为2.993%;研究区潜在地热资源异常区可分为环长白山天池火山口区域、松江河-抚松县及二道白河-松江镇一带的抚松盆地和松江盆区、仙人桥地区以及长白县-十四道沟一带的长白盆地区,其中环长白山天池火山口区域地热潜在概率值均大于0.9,最大值达到1.0。该研究为地热异常区的识别提供了一条新的思路。

关键词: 地热异常区, 遥感识别, 判别分析法, 长白山玄武岩区

Abstract: The surface temperature of Changbai Mountain basalt area was interpreted by using Landsat TM5 multispectral and infrared data, and the potential geothermal fields were identified by using discrimination analysis on the surface temperature, hot springs and geothermal well distribution, gravity, and magnetic fields. The results show that the surface temperature abnormal areas are mainly distributed around the Tianchi volcano area on Changbai Mountain and the three Mesozoic sedimentary basins (Fusong, Songjiang, and Changbai basins). The proportion of abnormal pixel in surface temperature is 2.993%. The potential geothermal fields in the study area are divided into four regions, including the area around Changbai Mountain Tianchi volcano, Songjianghe-Fusong County, Erdaobaihe-Songjiang Country (Fusong and Songjiang basins), and Xianrenqiao-Changbai County-Shisidaogou(Changbai basin). The probability of potential geothermal resources is greater than 0.9, and the maximum value is 1.0 in Changbai Mountain Tianchi volcano region. The study provides a new approach for potential geothermal field identification.

Key words: potential geothermal filed, remote sensing identification, discrimination analysis method, Changbai Mountain basalt area

中图分类号: 

  • P314.1
[1] Armstead H C H. Geothermal Energy[M]. London:CRC Press, 1978:357.
[2] Watson K, Kruse F A, Hummer-Miller S. Thermal Infrared Exploration in the Carlin Trend, Northern Nevada[J]. Geophysics, 1990, 55(1):70-79.
[3] Criss R E, Champion D E. Magnetic Properties of Granitic Rocks from the Southern Half of the Idaho Batholith:Influences of Hydrothermal Alteration and Implications for Aeromagnetic Interpretation[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B8):7061-7076.
[4] Rodgers J L. The Epistemology of Mathematical and Statistical Modeling[J]. American Psychologist, 2010, 65(1):1-12.
[5] Fritz C E, Schuurman N, Roberstson C, et al. A Sco-ping Review of Spatial Cluster Analysis Techniques for Point-Event Data[J]. Geospatial Health, 2013, 7(2):183-198.
[6] Liu J K, Yu M F, Ueng S J. A Structure-Controlled Model for Hot Spring Exploration in Taiwan by Remote Sensing[J]. Geosciences Journal, 2003, 7(4):323-325.
[7] 许军强,白朝军,刘嘉宜. 基于遥感技术的长白山火山区地热预测研究[J]. 国土资源遥感,2008,1(1):68-71. Xu Junqiang, Bai Chaojun, Liu Jiayi. Geothermal Resource Prognosis Based on Remote Sensing Technology in Changbai Moutain Volcanic Area[J]. Remote Sensing for Land & Resources, 2008, 1(1):68-71.
[8] Wu Guiju, Hu Xiangyun, Huo Guangpu, et al. Geo-physical Exploration for Geothermal Resources:An Application of MT and CSAMT in Jiangxia, Wuhan, China[J]. Journal of Earth Science, 2012, 23(5):175-167.
[9] 朱炳球.地热田地球化学勘查[M].北京:地质出版社,1992:1-166. Zhu Bingqiu. Geochemical Exploration of Geothermal Field[M]. Beijing:Geology Publishing House, 1992:1-166.
[10] 张良,朱湘,李爱平,等.一种基于逻辑回归算法的水军识别方法[J]. 信息安全与技术,2015(4) 57-62. Zhang Liang, Zhu Xiang, Li Aiping, et al. The Spa-mmer Detection Based on Logistic Regression[J]. Practical Method, 2015(4):57-62.
[11] 陈江,王安建,冯雨林,等. 基于知识驱动模型的遥感找矿预测方法研究[J].中国地质,2009,36(1):238-245. Chen Jiang, Wang Anjian, Feng Yulin, et al. A Study of the Remote Sensing Ore Prognostic Method Based on a Data-Driven Model[J]. Geology in China, 2009, 36(1):238-245.
[12] Rapolla A. Study on the Earth's Structure of an Italian Geothermal Field Using Gravity and Aeromagnetic Data[J]. Geophysical Journal, 1989, 97:409-419.
[13] Moghaddam M M, Mirzaei S, Nouraliee J, et al. In-tegrated Magnetic and Gravity Surveys for Geothermal Exploration in Central Iran[J]. Arabian Journal of Geosciences, 2016, 9(7):506-531.
[14] 任志娟. SPSS中判别分析方法的正确使用[J]. 统计与决策,2006,3(3):157-159. Ren Zhijuan.The Right Use of SPSS in the Discrimination Analysis Method[J]. Statistics and Decision, 2006, 3(3):157-159.
[15] 尤金凤,邢立新,潘军,等.基于Hyperion数据的油砂分布遥感研究[J].吉林大学学报(地球科学版),2016,46(5):1589-1597. You Jinfeng, Xing Lixin, Pan Jun, et al. Application of Hyperion Hyperspectral Image for Studying on the Distribution of Oil Sands[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1589-1597.
[16] 李映,焦李成. 基于核Fisher判别分析的目标识别[J]. 西安电子科技大学学报,2003,30(2):179-182. Li Ying, Jiao Licheng.Target Recognition Based on Kernel Fisher Discriminant[J]. Journal of Xidian University, 2003, 30(2):179-182.
[1] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[2] 卢文喜,李俊,于福荣,于国庆,刘磊. 逐步判别分析法在筛选水质评价因子中的应用[J]. J4, 2009, 39(1): 126-0130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!