吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 334-342.doi: 10.13278/j.cnki.jjuese.20160325

• 地球探测与信息技术 • 上一篇    

结合实测光谱的ASTER TIR数据岩性划分与构造样式分析:以新疆阿克苏蓝片岩为例

张志1, 管志超2, 王少军3   

  1. 1. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 武汉 430079;
    3. 中国地质大学(武汉)公共管理学院, 武汉 430074
  • 收稿日期:2017-02-15 出版日期:2018-01-26 发布日期:2018-01-26
  • 作者简介:张志(1964-),男,教授,主要从事遥感地质的教学与科研工作,E-mail:171560655@qq.com
  • 基金资助:
    中国地质调查局项目(DD20160068)

A Method of Combining Measured Spectra and ASTER TIR Image to Divide Lithology for New Tectonic Style Analysis: Based on the Blueschist in Akesu

Zhang Zhi1, Guan Zhichao2, Wang Shaojun3   

  1. 1. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    3. School of Public Administration, China University of Geosciences, Wuhan 430074, China
  • Received:2017-02-15 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by Project of China Geological Survey (DD20160068)

摘要: 常见造岩矿物的特征谱带位于热红外区域,因此热红外遥感在岩石地层划分与构造样式分析方面有巨大的应用潜力,并且精细岩石地层划分是构造样式分析的基础。新疆阿克苏蓝片岩被认为是目前世界范围内保存最好的前寒武纪蓝片岩之一。本文对该地质体中采集的不同类型岩石样品进行了室内热红外发射光谱测试,发现白云母石英片岩类残余辐射特征(restrahlen features,RF)位于波长8.55、9.16和9.60 μm处,绿泥绿帘片岩类RF位于波长9.60、10.50和11.66 μm处。按照ASTER TIR波段位置将样品的发射率光谱曲线重采样,利用ASTER TIR数据计算基性指数Ib和白云母指数Im。依据Ib和Im得到不同岩性段分布图,该图能反映蓝片岩地质体中不同基性程度岩石、后期侵入的基性岩墙群以及白云母石英片岩单元的空间分布。从岩性区域分布特征看,我们认为新疆阿克苏蓝片岩地质体平面构造样式表现为褶皱,其轴迹线为NE—SW向,这一结果与前人对其划分的单斜地层结构有较大的差异。另外,褶皱出现在地质体南部,说明其北部所受压力较南部小,与前人认识一致。研究结果体现了热红外遥感结合实测光谱可有效探测矿物岩石信息的优势,该方法可为相关研究提供参考。

关键词: 实测光谱, ASTER TIR, 矿物指数, 岩性划分, 褶皱, 蓝片岩

Abstract: The research tries to solve the problem of lithological classification in the area where it's hard to implement a geological survey, in the meanwhile, by using a thermal method to find tectonic features which are hidden under the visible light. Some minerals, like quartz and feldspar, do not exhibit absorption features in the VNIR and SWIR regions, but display fundamental molecular absorption features in the TIR wavelength region.These characteristic spectra always reserve on the rock surface's measured spectra. On the basis of the emissivity spectra of the rock samples which are measured by FTIR in the region of thermal infrared spectroscopy, the lithology could be classified by band ratio method of ASTER TIR image. The measured emissive spectra of blueschist rock samples' in Akesu carry a large amount of information. The Restrahlen Features (RF) positions of muscovite quartz schist are similar to that of the monzonitic quartz schist. Their resampled spectra curve shows that the rock emissivity increases from ASTER Band 12 to Band 13, but only muscovite quartz schist has a higher emissivity value in Band 13 and Band 14 than Band 10 and Band 12, which could be distinguished from other samples. The Muscovite Index (Im=((B14·B13)/(B10·B12)) is established to indicate the distribution of muscovite's content in the study area. The chlorite epidote schist's spectra are in the high value position, which is the same as that of the rock diabase, but it still has a significant RF position in wavelength 10.5μm corresponding to the ASTER Band 13. So we built up the Basite Index (Ib=(B12·B14)/(B13·B13) to indicate the basic rocks in Akesu geological body. According to these two expressions, we obtained band ratios on ASTER TIR emissivity products, and got the results of Akesu thermal infrared Im and Ib image in a colored lookup table.
Ib and Im images have a good reflection of the lithology distribution, which indicates a rich content of muscovite in the southeast Akesu and a rich basic rock in the northeast Akesu. The stratum in the northwest could be devided into several layers corresponding to the samples we collected in the field work. The diabases are clearly visible in Ib image. On the basis of these images, we drew a new Geological sketch map and found a rootless hook fold in Akesu blueschist. The previous research did not exhibit it on their map. The rootless hook fold indicates that the south part of Akesu blueschist bore a greater pressure than the north part. It illustrates a tectonic model of oceanic plate southward subduction to Tarim craton which has been put forward by Nakajima in 1990, and the thesis of Wentao Huang has a same conclusion as ours.
The authors consider that thermal infrared remote sensing has a wide application prospection for mineral identification and lithological classification.

Key words: measured spectra, ASTER TIR, mineral index, lithological classification, fold, blueschist

中图分类号: 

  • TP701
[1] Bhadra B K, Pathak S, Karunakar G, et al. ASTER Data Analysis for Mineral Potential Mapping Around Sawar-Malpura Area, Central Rajasthan[J]. Journal of the Indian Society of Remote Sensing, 2013, 41(2): 391-404.
[2] Lyon R J P. Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils[J]. Tissue Antigens, 1963, 27(3): 142-146.
[3] 傅碧宏,丑晓伟. 塔里木盆地柯坪隆起典型沉积岩类的热红外光谱特征研究[J]. 沉积学报, 1994, 12(4): 95-100. Fu Bihong, Chou Xiaowei. Study of Thermal Infrared Spectra Features of Typical Sedimentary, Rocks from Kalpin Uplift in Tatim Basin[J]. Acta Sedimentologica Sinica, 1994, 12(4): 95-100.
[4] Hunt G R, Salisbury J W. Mid-Infrared Spectral Be-havior of Igneous Rocks[C/OL]// Rasmussen J E, McLain R J, Turtle J P. Environmental Research Papers Air Force Cambridge Research Labs.[2016-09-20]. http://adsabs.harvard.edu/abs/1976erp..rept.....H.
[5] Christensen P R, Bandfield J L, Hamilton V E, et al. A Thermal Emission Spectral Library of Rock-Forming Minerals[J]. Journal of Geophysical Research Planets, 2000, 105(E4): 9735-9739.
[6] Ninomiya Y, Fu B H. Extracting Lithologic Informa-tion from ASTER Multispectral Thermal Infrared Data in the Northeastern Pamirs[J]. Xinjiang Geology, 2003, 21(1): 22-30.
[7] Ninomiya Y, Fu B, Cudahy T J. Detecting Lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Multispectral Thermal Infrared "Radiance-at-Sensor" Data[J]. Remote Sensing of Environment, 2005, 99(1/2): 127-139.
[8] 闫柏琨. 热红外遥感岩矿波谱机理及信息提取技术方法研究[D]. 北京:中国地质大学(北京), 2006. Yan Bokun. Study on Mechanism of Spectrums of Rocks and Minerals and Information Extraction Method in Thermal Remote Sensing Geology[D]. Beijing: China University of Geosciences (Beijing), 2006.
[9] 包平,张志,王少军. 结合实测光谱的ASTER数据岩性识别方法:以西昆仑其木干二长花岗岩提取为例[J]. 地质科技情报, 2015, 34(3): 214-219. Bao Ping, Zhang Zhi, Wang Shaojun. Lithological Identification Method of ASTER Data by Combining with Field Measured Spectra: A Case Study on the West Kunlun Qimugan Monzonitic Granite[J]. Geological Science & Technology Information, 2015, 34(3): 214-219.
[10] 陈圣波,于亚凤,杨金中,等. 基于实测光谱指数法的ASTER遥感数据岩性信息提取[J]. 吉林大学学报(地球科学版), 2016, 46(3): 938-944. Chen Shengbo, Yu Yafeng, Yang Jinzhong, et al. Lithologic Information Extraction from ASTER Remote Sensing Data Based on Spectral Ratio Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 938-944.
[11] Rowan L C, Mars J C. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data[J]. Remote Sensing of Environment, 2003, 84(3): 350-366.
[12] Rowan L C, Mars J C, Simpson C J. Lithologic Mapping of the Mordor, NT, Australia Utramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1/2): 105-126.
[13] 郑硕,付碧宏. 基于ASTER SWIR-TIR多光谱数据的西准噶尔花岗岩类岩性信息提取与识别:以克拉玛依岩体为例[J]. 岩石学报, 2013, 29(8): 2936-2948. Zheng Shuo, Fu Bihong. Lithological Mapping of Granitiods in the Western Junggar from ASTER SWIR-TIR Multispectral Data: Case Study in Karamay Pluton, Xinjiang[J]. Acta Petrologica Sinica, 2013, 29(8): 2936-2948.
[14] Gillespie A, Rokugawa S, Matsunaga T, et al. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 1998, 36(4): 1113-1126.
[15] 张立飞,姜文波,魏春景,等. 新疆阿克苏前寒武纪蓝片岩地体中迪尔闪石的发现及其地质意义[J]. 中国科学:地球科学, 1998, 8(6): 539-545. Zhang Lifei, Jiang Wenbo, Wei Chunjing, et al. The Discovery of Diramphibole in Xinjiang Akesu Precambrian Schist Terrane and Its Geological Significance[J]. Science in China(Series D), 1998, 8(6): 539-545
[16] Liou J G, Graham S A, Maruyama S, et al. Pro-terozoic Blueschist Belt in Western China: Best Documented Precambrian Blueschists in The World[J]. Geology, 1990, 17(12): 1127-1131.
[17] Hunt G R, Salisbury J W. Mid-Infrared Spectral Be-havior of Metamorphic Rocks[J]. Environ Res Pap, 1974, 496: 142.
[18] 黄文涛,于俊杰,郑碧海,等. 新疆阿克苏前寒武纪蓝片岩中多硅白云母的研究[J]. 矿物学报, 2009, 29(3): 338-344. Huang Wentao, Yu Junjie, Zheng Bihai, et al. Study on Phengite in Aksu Precambrian Blueschists, Xinjiang[J]. Acta Mineralogica Sinica, 2009, 29(3): 338-344.
[19] Farmer V C. The Infrared Spectra of Minerals[M]. London: Mineralogical Society, 1974: 331-364.
[20] 张志勇,朱文斌,舒良树,等. 新疆阿克苏地区前寒武纪蓝片岩构造-热演化史[J]. 岩石学报,2008, 24(12): 2849-2856. Zhang Zhiyong, Zhu Wenbin, Shu Liangshu, et al. Thermo-Eectonic Evolution of Precambrian Blueschists in Aksu, Northwest Xinjiang, China[J]. Acta Petrologica Sinica, 2008, 24(12): 2849-2856.
[21] Liou J G, Graham S A, Maruyama S, et al. Charac-teristics and Tectonic Significance of the Late Proterozoic Aksu Blueschists and Diabasic Dikes, Northwest Xinjiang, China[J]. International Geology Review, 1996, 38(3): 228-244.
[1] 赵立敏, 刘永江, 滕加雨, 李伟民. 内蒙古头道桥地区蓝闪石片岩和相关变质岩石岩石学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 534-544.
[2] 刘祚冬, 王红军, 马锋, 吴珍珍, 杜商, 汪永华. 基于空间网格插值的重油油藏资源量计算方法——以扎格罗斯白垩系重油层资源评价为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1668-1677.
[3] 朱华平, 范文玉,毛洪江,吴振波,高建华,刘书生. 老挝万象省爬立山(PHaLek)铁矿床地质特征及成矿作用分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1492-1501.
[4] 程海艳. 库车褶皱冲断带西段盐底辟成因机制[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1134-1141.
[5] 苏金宝,董树文,张岳桥,李勇,陈宣华, 崔建军,张交东. 川黔湘构造带构造样式及深部动力学制约[J]. 吉林大学学报(地球科学版), 2014, 44(2): 490-506.
[6] 刘志宏, 梅梅, 柳行军, 吴相梅, 万传彪, 林东成, 高军义. 海拉尔盆地贝尔凹陷伸展断层转折褶皱作用及其对沉积作用的制约[J]. J4, 2012, 42(5): 1330-1337.
[7] 刘志宏, 王芃, 赵呈祥, 沙茜, 周飞. 柴达木盆地北缘白垩纪挤压构造的发现及其地质意义[J]. J4, 2010, 40(5): 979-985.
[8] 周建波, 韩杰, 张兴洲, 曾维顺. 牡丹江地区蓝片岩的地球化学特征及其大地构造意义[J]. J4, 2010, 40(1): 93-103.
[9] 王跃, 张兴洲, 宋海峰, 张春艳, 熊小松. 牡丹江地区黑龙江杂岩的变质变形特征[J]. J4, 2009, 39(6): 1066-1072.
[10] 刘志宏, 王芃, 刘永江, 赵呈祥, 高军义, 万传彪. 柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J]. J4, 2009, 39(5): 796-802.
[11] 孙永河,吕延防,付晓飞,杨典栋. 准噶尔盆地南缘褶皱冲断带断裂输导石油效率评价[J]. J4, 2008, 38(3): 430-0436.
[12] 刘志宏,吴相梅,朱德丰,崔敏,柳行军,李晓海. 大杨树盆地的构造特征及变形期次[J]. J4, 2008, 38(1): 27-0033.
[13] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215-0220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!