吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 411-419.doi: 10.13278/j.cnki.jjuese.20170061

• 地球物理数据处理与解释技术 • 上一篇    下一篇

基于球坐标系下有限差分的地磁测深三维正演

李建平, 翁爱华, 李世文, 李大俊, 李斯睿, 杨悦, 唐裕, 张艳辉   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-02-07 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 翁爱华(1968-),男,教授,博士生导师,主要从事地球电磁法和电磁法勘探方法技术、正反演理论及应用研究,E-mail:wengah@jlu.edu.cn E-mail:wengah@jlu.edu.cn
  • 作者简介:李建平(1991-),男,博士研究生,主要从事电磁法勘探正反演理论研究,E-mail:lijp15@mails.jlu.edu.cn
  • 基金资助:
    国家重大科研仪器专项(2011YQ05006010)

3-D Forward Method for Geomagnetic Depth Sounding Based on Finite Difference Method in Spherical Coordinate

Li Jianping, Weng Aihua, Li Shiwen, Li Dajun, Li Sirui, Yang Yue, Tang Yu, Zhang Yanhui   

  1. Collegeof GeoExploration Sciences and Technology, Jilin University, Changchun 130026, China
  • Received:2017-02-07 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Key Scientific Instrument and Equipment Development Projects of China (2011YQ05006010)

摘要: 为了计算全球尺度电磁感应的响应,本文介绍地磁测深频率域三维正演。正演算法采用球坐标系下的交错网格有限差分方法,从Maxwell方程的积分形式出发,采用PARDISO对离散后的方程组求解,避免了迭代求解的散度校正。为了验证本文结果的正确性和精度,与前人的有限元和有限差分方法进行了对比,一维层状模型的三维交错网格有限差分数值结果和解析解相对误差小于5%,双半球模型的计算结果与前人的计算结果完全吻合。三维"棋盘模型"计算表明磁场分量对异常体的大小和位置具有很好的分辨能力。

关键词: 地磁测深, 球坐标, 三维正演, 有限差分, 地磁响应函数

Abstract: In order to compute the global-scale electromagnetic induction responses, this paper introduces a 3-D forward method of the frequency domain geomagnetic depth sounding (GDS). The method is based on the Staggered-grid finite difference method (FDM) in spherical coordinate. The difference equations are derived from the integral form of Maxwell equations. The PARDISO Solver is used to solve the discrete equations to avoid the divergence correction of iterations. To validate our code, we compared the results to the solutions of the finite element method and FDM. The relative error between the finite difference numerical result of the three-dimensional staggered grid and the analytical solution is less than 5%. The accuracy of the two hemispheres model is also high enough. The calculation results of the three-dimensional checkerboard model show that the magnetic field components have a good resolution to the size and position of an abnormal body.

Key words: geomagnetic depth sounding, spherical coordinate, 3-D forward modeling, finite difference, geomagnetic response function

中图分类号: 

  • P631.2
[1] Karato S I. Remote Sensing of Hydrogen in Earth's Mantle[J]. Reviews in Mineralogy & Geochemistry, 2006, 62(1):343-375.
[2] Schultz A. On the Vertical Gradient and Associated Heterogeneity in Mantle Electrical Conductivity[J]. Phys Earth Planet Int,1990, 64(1):68-86.
[3] Utada H, Koyama T, Obayashi M, et al. A Joint Interpretation of Electromagnetic and Seismic Tomography Models Suggests the Mantle Transition Zone Below Europe is Dry[J]. Earth Planet Sci Lett, 2009, 281(3/4):249-257.
[4] Shimizu H, Utada H, Baba K, et al. Three-Dimen-sional Imaging of Electrical Conductivity in the Mantle Transition Zone Beneath the North Pacific Ocean by a Semi-Global Induction Study[J]. Phys Earth Planet Int, 2010, 183(1/2):252-269.
[5] Semenov A,Kuvshinov A. Global 3-D Imaging of Mantle Conductivity Based on Inversion of Observatory C-Responses:Ⅱ:Data Analysis and Results[J]. Geophysical Journal International,2012, 191(3):965-992.
[6] Kelbert A,Schultz A,Egbert G. Global Electromag-netic Induction Constraints on Transition-Zone Water Content Variations[J]. Nature, 2009, 460:1003-1006.
[7] Huang X,Xu Y,Karato S I. Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite[J]. Nature, 2005, 434:746-749.
[8] Yoshino T,Manthilake G,Matsuzaki T,et al. Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite[J]. Nature, 2008, 451:326-329.
[9] Sun J,Egbert G. A Thin-Sheet Model for Global Electromagnetic Induction[J]. Geophysical Journal International,2012, 189(1):343-356.
[10] Schmucker U. A Spherical Harmonic Analysis of Solar Daily Variations in the Years 1964-1965:Response Estimates and Source Fields for Global Induction:I:Methods[J]. Geophysical Journal International, 1999, 136(2):439-454.
[11] Koyama T, Khan A, Kuvshinov A. Three-Dimen-sional Electrical Conductivity Structure Beneath Australia from Inversion of Geomagnetic Observatory Data:Evidence for Lateral Variations in Transition-Zone Temperature, Water Content and Melt[J]. Geophysical Journal International, 2014, 196(3):1330.
[12] Kuvshinov A. 3-D Global Induction in the Oceans and Solid Earth:Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin[J]. Surveys in Geophysics, 2008, 29(2):139-186.
[13] Everett M E,Schultz A. Geomagnetic Induction in a Heterogeneous Sphere:Azimuthally Symmetric Test Computations and the Response of an Undulating 600-km Discontinuity[J]. J Geophys of Research Atmospheres, 1996, 101(B2):2765-2783.
[14] Yoshimura R,Oshiman N. Edge-Based Finite Element Approach to the Simulation of Geoelectromagnetic Induction on a 3-D Sphere[J]. Geophys Res Lett, 2002, 29(3):1-4.
[15] Ribaudo J T,Constable C G,Parker R L. Scripted Finite Element Tools for Global Electromagnetic Induction Studies[J]. Geophysical Journal International, 2012, 188(2):435-446.
[16] Uyeshima M,Schultz A. Geoelectromagnetic Induc-tion in a Heterogeneous Sphere:A New Three-Dimensional Forward Solver Using a Conservative Staggered-Grid Finite Difference Method[J]. Geophysical Journal International,2000, 140(3):636-650.
[17] Kelbert A, Egbert G D, Schultz A. Non-Linear Conjugate Gradient Inversion for Global EM Induction:Resolution Studies[J]. Geophysical Journal International, 2008, 173(2):365-381.
[18] Weiss C J. Triangulated Finite Difference Methods for Global-Scale Electromagnetic Induction Simulations of Whole Mantle Electrical Heterogeneity[J]. Geochemistry Geophysics Geosystems,2010,11(11):129-143.
[19] Tarits P, Mande A M. The Heterogeneous Electrical Conductivity Structure of the Lower Mantle[J]. Physics of the Earth & Planetary Interiors, 2010, 183(1/2):115-125.
[20] Martinec Z. Spectral-Finite Element Approach to Three-Dimensional Electromagnetic Induction in a Spherical Earth[J]. Geophysical Journal International, 1999, 136(1):229-250.
[21] Velímsk J, Martinec Z. Time-Domain, Spherical Harmonic-Finite Element Approach to Transient Three-Dimensional Geomagnetic Induction in a Spherical Heterogeneous Earth[J]. Geophysical Journal International, 2005, 161(1):81-101.
[22] Kelbert A, Kuvshinov A, Velímsk J, et al. Global 3-D Electromagnetic Forward Modelling:A Benchmark Study[J]. Geophysical Journal Internationa,2014, 197(2):785-814.
[23] 陈伯舫. 中国东南部地幔高导层的埋藏深度[J]. 地震学报, 1986,8(2):172-178. Chen Bofang. Buried Depth of the High Conductivity Layer Beneath the Region of South-East China[J]. Acta Seismologica Sinica,1986, 8(2):172-178.
[24] 杜兴信, 鲁秀玲. 用单台Z/H法研究陕西地区深部电导率[J]. 内陆地震, 1994,8(4):333-338. Du Xingxin, Lu Xiuling. Investigation on Deep Electroconductivity of Shaanxi Region by Means of Z/H Method with Single Station[J]. Inland Earthquake,1994, 8(4):333-338.
[25] 范国华, 姚同起, 顾左文,等. 利用磁梯度法研究我国地幔导电率[J]. 地震学报, 1997,19(2):164-173. Fan Guohua, Yao Tongqi, Gu Zuowen, et al. Research on Mantle Conductivity of China with Gradient Method[J]. Acta Seismologica Sinica, 1997, 19(2):164-173.
[26] 赵国泽,汤吉,梁竞阁,等. 用大地电磁网法在长春等地探测上地幔电导率结构[J]. 地震地质,2001, 23(2):143-152. Zhao Guoze,Tang Ji,Liang Jingge,et al. Measurement of Network-MT in Two Areas of NE China for Study of Upper Mantle Conductivity Structure of the Back-Arc Region[J]. Seismology and Geology,2001, 23(2):143-152.
[27] 徐光晶,汤吉,黄清华,等. 华北地区上地幔及过渡带电性结构研究[J]. 地球物理学报,2015, 58(2):566-575. Xu Guangjing,Tang Ji,Huang Qinghua,et al. Study on the Conductivity Structure of the Upper Mantle and Transition Zone Beneath North China[J]. Chinese Journal of Geophysics,2015, 58(2):566-575.
[28] Rokityansky I I. Geoelectromagnetic Investigation of the Earth's Crust and Mantle[M]. Berlin:Springer-Verlag,1982.
[29] 李大俊,翁爱华,杨悦,等. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5):1552-1561. Li Dajun, Weng Aihua, Yang Yue,et al. Three-Dimension Forward Modeling and Characteristics for Surface-Borehole Transient Electromagnetic by Using Staggered-Grid Finite Difference Method[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1552-1561.
[30] Smith J T. Conservative Modeling of 3-D Electromag-netic Fields:Part 1:Properties and Error Analysis[J]. Geophysics, 1996, 61(5):1308-1318.
[31] Schultz A,Larsen J C. On the Electrical Conductivity of the Mid-Mantle:I:Calculation of Equivalent Scalar Magnetotelluric Response Functions[J]. Geophysical Journal International, 1987, 88(3):733-761.
[32] Schmucker U. Substitute Conductors for Electromag-netic Response Estimates[J]. Pure and Applied Geophysics, 1987, 125(2):341-367.
[33] Fujii I, Schultz A. The 3D Electromagnetic Response of the Earth to Ring Current and Auroral Oval Excitation[J]. Geophysical Journal International, 2002, 151(3):689-709.
[34] Medin A E,Parker R L,Constable S. Making Sound Inferences from Geomagnetic Sounding[J]. Physics of the Earth & Planetary Interiors, 2007, 160(1):51-59.
[35] 李世文,翁爱华,李建平,等. 浅部约束的地磁测深C-响应一维反演[J]. 地球物理学报, 2017,60(3):1201-1210. Li Shiwen, Weng Aihua, Li Jianping, et al. 1-D Inversion of C-Response Data from Geomagnetic Depth Sounding with Shallow Resistivity Constraint[J]. Chinese Journal of Geophysics, 201760(3):1201-1210.
[36] Shimizu H, Koyama T, Baba K. Three-Dimensional Geomagnetic Response Functions for Global and Semi-Global Scale Induction Problems[J]. Geophysical Journal International, 2009, 178(1):123-144.
[1] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[2] 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260.
[3] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[4] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[5] 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537.
[6] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[7] 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951.
[8] 周晓华, 陈祖斌, 曾晓献, 焦健. 交错网格有限差分法模拟微动信号[J]. J4, 2012, 42(3): 852-857.
[9] 孟庆生, 樊玉清, 张珂, 张盟. 高阶有限差分法管波传播数值模拟[J]. J4, 2011, 41(1): 292-298.
[10] 刘四新, 周俊峰, 吴俊军, 曾昭发, 万洪祥. 金属矿钻孔雷达探测的数值模拟[J]. J4, 2010, 40(6): 1479-1484.
[11] 孙章庆, 孙建国, 张东良. 2.5维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2010, 40(2): 425-431.
[12] 杨昊, 孙建国, 韩复兴, 马淑芳. 基于完全三叉树堆排序的波前扩展有限差分地震波走时快速算法[J]. J4, 2010, 40(1): 188-194.
[13] 孙章庆, 孙建国, 张东良. 二维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2009, 39(3): 528-534.
[14] 杨海燕,岳建华. 巷道影响下三维全空间瞬变电磁法响应特征[J]. J4, 2008, 38(1): 129-0134.
[15] 殷文. 基于频率域高阶有限差分法的正演模拟及并行算法[J]. J4, 2008, 38(1): 144-0151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!