吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 922-933.doi: 10.13278/j.cnki.jjuese.20170150

• 地球探测与信息技术 • 上一篇    下一篇

辽宁海城及其邻区地震b值空间分布特征

郑确, 刘财, 田有   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-07 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 田有(1979-),男,教授,博士,主要从事地球内部介质属性成像及动力学研究,E-mail:tianyou@jlu.edu.cn E-mail:tianyou@jlu.edu.cn
  • 作者简介:郑确(1988-),女,博士研究生,主要从事地震层析成像和统计地震学研究,E-mail:zhengque881002@sina.com
  • 基金资助:
    国家自然科学基金项目(41430322,41474030);国家重点基础研究发展计划("973"计划)项目(2016YFC0600301)

Spatial Distribution of b-Value in Haicheng Region, Liaoning Province

Zheng Que, Liu Cai, Tian You   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-07 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322, 41474030) and National Key Basic Research Program of China ("973" Program) (2016YFC0600301)

摘要: 震级-频度分布(FMD)是地震学研究中最重要的经验公式之一,相关系数b是构造学和地震危险性评估的重要因子,具有表征前震和余震的特性。辽宁省地震多发生在金州断裂附近,自1975年海城7.3级地震发生后,与金州断裂交汇的海城河—大洋河断裂开启活跃模式,其东南端岫岩附近在1999年又发生5.6级地震。近年来盖州附近地震活动也在增强。因此,本文利用b值空间分布特征对海城及其邻区的应力分布特点进行研究。震源定位准确与否直接影响b值计算,双差定位后的数据与常规目录相比具有更高的精度,但是完整性有一定下降。本文收集了中国地震台网1981—2005年的辽宁省地震目录,并进行双差定位,比较分析了常规目录数据和双差数据的b值分布差异,认为在地震密集区,双差定位后的数据可以被用来获得更准确的b值。对主要研究区进行网格划分,使用双差数据,得到b值的水平和垂直分布特征。结果表明:b值为0.6~1.8,随深度增加而降低;岫岩和盖州震区具有较低的b值,意味着具有较高的地震危险性;浑河震区与海城河—大洋河断裂东南方向具有较高的b值,说明该区域未来发生大地震的概率很低;与金州断裂交汇区域的b值在1.0附近,说明该地区应力暂时处于稳定状态,未来具有较低的地震危险性。

关键词: 辽宁海城, b值, 双差定位方法, 地震危险性

Abstract: The frequency-magnitude distribution (FMD) is one of the most important empirical equations. The parameter b, presenting the characteristics of foreshocks and aftershocks, is often used in the tectonics and seismic hazard assessment. Earthquakes frequently occurred in Jinzhou fault zone before. Since the Haicheng Ms 7.3 earthquake occurred in 1975, the Haichenghe-Dayanghe fault interlaced with the Jinzhou fault has been active. An earthquake with Ms 5.6 occurred in Xiuyan in the year of 1999, and Gaizhou has high seismic activities recently as well. In this study, the spatial distribution of b-values were used to detect current stress state of Haicheng region. Relocated earthquake data by double-difference (DD) algorithm can significantly improve the location precision, although suffer from the degeneration of data completeness. We collected arrival-time data recorded by the seismic network, and used the DD method from 1981 to 2005. The spatial distribution of b-values from routine catalogue and data after using DD method were compared and analyzed,which revealed that DD data can be used for b-value calculation and has higher accuracy when the earthquakes clustered. We got the vertical and horizontal variation of b-values using gridding techniques with DD data in Haicheng and Xiuyan area. Our results revealed that the b-values were varied spatial significantly, ranging from 0.6 to 1.8, and decreased with depth. The Xiuyan and Gaizhou area with low b-values may indicate the area most likely seismogenic for future large earthquakes. The Hunhe area and the southeast part of Haichenghe-dayanghe fault have high b-values,indicating a low opportunity for seismic hazard. Near the intersection of Jinzhou and Haichenghe-Dayanghe faults, the b-value is closed to 1.0, such a stable stress suggests a low probability of future large earthquakes.

Key words: Haicheng, Liaoning, characteristic of b-value, double-difference method, seismic hazard

中图分类号: 

  • P631.4
[1] 钟以章, 卢造勋, 刘天革. 东北地区地壳结构特征与地震分布[J]. 地震地质,1979, 1(2):13-21. Zhong Yizhang, Lu Zaoxun, Liu Tiange. Characteristics of Crustal Structures in Northeast China and Their Relations to the Distribution of Strong Earthquakes[J]. Seismology and Geology, 1979, 1(2):13-21.
[2] 雷清清, 廖旭, 董晓燕. 辽宁省地震构造研究[J]. 东北地震研究, 2008, 24(4):1-10. Lei Qingqing, Liao Xu, Dong Xiaoyan. The Study of the Earthquake Structure of Liaoning Province[J]. Seismological Research of Northeast China, 2008, 24(4):1-10.
[3] 方如恒. 辽宁地质构造基本特征[J]. 辽宁地质, 1985(3):189-199. Fang Ruheng. The Fundamental Characteristics of Geological Structure in Liaoning Province[J]. Liaoning Geology, 1985(3):189-199.
[4] 雷清清, 廖旭, 董晓燕, 等. 辽宁省主要活动断层与地震活动特征分析[J]. 震灾防御技术, 2008, 3(2):111-125. Lei Qingqing, Liao Xu, Dong Xiaoyan, et al. Main Active Faults and Their Seismic Activities in Liaoning Province[J]. Technology for Earthquake Disaster Prevention, 2008, 3(1):111-125.
[5] 李荣安, 徐平, 焦明若, 等. 海城地震地区地壳三维结构特征[J]. 地震地质, 1997, 19(1):10-13. Li Rong'an, Xu Ping, Jiao Mingruo, et al. Features of the Three-Dimension Crustal Structure of the Haicheng Seismic Area[J]. Seismology and Geology, 1997, 19(1):10-13.
[6] 卢造勋, 刘国栋, 魏梦华, 等. 中国辽南地区地壳与上地幔介质的横向不均匀性与海城7.3级地震[J]. 地震学报, 1990, 12(4):367-378. Lu Zaoxun, Liu Guodong, Wei Menghua, et al. Lateral Inhomogeneity of Crust and Upper Mantle in South Liaoning, China and Its Relationship with the M 7.3 Haicheng Earthquake[J]. Acta Seismologica Sinica, 1990, 12(4):367-378.
[7] 孙莲, 李永华, 吴庆举, 等. 中国东北及周边地区地壳横波衰减的成像研究[J]. 地球物理学报, 2012, 55(4):1179-1183. Sun Lian, Li Yonghua, Wu Qingju, et al. Q0 Tomography of S Wave Attenuation in Northeast China and Adjacent Regions[J]. Chinese Journal of Geophysics, 2012, 55(4):1179-1183.
[8] 刘财, 郑确, 田有, 等. 辽宁海城及其邻区地震活动性研究[J]. 吉林大学学报(地球科学版), 2014, 44(4):1-8. Liu Cai, Zheng Que, Tian You, et al. Study on the Seismic Activity of Haicheng Region[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4):1-8.
[9] 杨智娴, Stump B W, 陈运泰, 等. 1999年海城岫岩地震序列的精准定位[J]. 地震学报, 2011, 33(3):271-278. Yang Zhixian, Stump B W, Chen Yuntai, et al. Precise and Accurate Location of the 1999 Haicheng-Xiuyan Earthquake Sequence[J]. Acta Seismologica Sinica, 2011, 33(3):271-278.
[10] 顾浩鼎, 陈运泰, 高祥林, 等. 1975年2月4日辽宁省海城地震的震源机制[J]. 地球物理学报, 1976, 19(4):270-285. Gu Haoding, Chen Yuntai, Gao Xianglin, et al. Focal Mechanism of Haicheng, Liaoning Province, Earthquake of February 4, 1975[J]. Acta Geophysica Sinica, 1976, 19(4):270-285.
[11] Gutenberg B, Richter C F. Frequency of Earthquakes in California[J]. Bull Seism Soc Am, 1944, 34(4):185-188.
[12] Waldhauser F, Ellsworth W L. A Double-Difference Earthquake Location Algorithm:Method and Application to the Northern Hayward Fault, California[J]. Bull Seism Soc Am, 2000, 90(6):1353-1368.
[13] 张盛峰, 吴忠良, 房立华. 双差(DD)定位地震目录能用于地震序列的统计地震学参数计算吗?:云南鲁甸Ms 6.5地震序列b值的空间分布[J]. 地震地质,2014,36(4):1244-1257. Zhang Shengfeng, Wu Zhongliang, Fang Lihua. Can the DD-Relocated Earthquake Catalogue be Used for the Statistical Parameters of an Earthquake Sequence?:A Case Study of the Spatial Distribution of B-Values for the Aftershocks of the 2014 Ludian Ms 6.5 Earthquake[J]. Seismology and Geology, 2014, 36(4):1244-1257.
[14] Umino N, Sacks I S. Magnitude-Frequency Relations for Northeastern Japan[J]. Bull Seism Soc Am, 1993, 83(5):1492-1506.
[15] Mori J, Abercrombie R E. Depth Dependence of Earthquake Frequency-Magnitude Distributions in California:Implications for Rupture Initiation[J]. Journal of Geophysical Research-Solid Earth, 1997, 102(B7):15081-15090.
[16] Garden J K, Knopoff L. Is the Sequence of Earth-quake in Southern California, with Aftershocks Removed, Poissonian?[J]. Bull Seism Soc Am, 1974, 64(5):1363-1367.
[17] 黄媛, 杨建思, 张天中. 2003年新疆巴楚伽师地震序列的双差法重新定位研究[J]. 地球物理学报, 2006, 9(1):162-169. Huang Yuan, Yang Jiansi, Zhang Tianzhong. Double-Difference Method on Xinjiang Bachu Jiashi Earthquake Sequence[J]. Chinese Journal of Geophysics, 2006, 9(1):162-169.
[18] 刘劲松,Chun K Y,Henderson G A, 等. 双差定位法在地震丛集精确定位中的应用[J]. 地球物理学进展, 2007, 22(1):137-141. Liu Jinsong, Chun K Y, Henderson G A, et al. The Application of Double-Difference Location Method in Earthquake Cluster[J]. Progress in Geophysics, 2007, 22(1):137-141.
[19] 莘海亮, 刘明军, 张元生, 等. 甘东南地区地震重新定位研究[J]. 地震研究,2010, 33(3):292-299. Shen Hailiang, Liu Mingjun, Zhang Yuansheng, et al. The Study of Relocation Southeast Earthquakes[J]. Seismic Research, 2010, 33(3):292-299.
[20] 杨智娴, 陈运泰, 张宏志. 张北尚义地震序列的重新定位[J]. 地震地磁观测与研究, 1999, 20(6):6-9. Yang Zhixian, Chen Yuntai, Zhang Hongzhi. Relocation of the Earthquake in Zhangbei-Shangyi[J]. Seismological and Geomagnetic Observation, 1999, 20(6):6-9.
[21] Aki K. Maximum Likelihood Estimate of b in the Formula logN=a-bM and Its Confidence Limits[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1965, 43:237-239.
[22] Guttorp P. On Least-Squares Estimation of b Values[J]. Bull Seism Soc Am,1987, 77(6):2115-2124.
[23] Hamilton R M. Mean Magnitude of an Earthquake Sequence[J]. Bull Seism Soc Am,1967, 57(5):1115-1116.
[24] Shi Y, Bolt B A. The Standard Error of the Mag-nitude-Frequency b Value[J]. Bull Seism Soc Am, 1982, 72(5):1677-1687.
[25] Utsu T. A Method for Determining the Value of b in a Formula logn=a-bm Showing the Magnitude Frequency for Earthquakes[J]. Geophys Bull Hokkaido Univ, 1965, 13:99-103.
[26] Cao A, Gao S S. Temporal Variation of Seismic b-Values Beneath Northeastern Japan Island Arc[J]. Geophysical Research Letters, 2002, 29(9):43-48.
[27] Stein R S, Hanks T C. M ≥ 6 Earthquakes in Southern California During the Twentieth Century[J]. Bull Seism Soc Am, 1998, 88(3):635-652.
[28] Mousavi S M. Comment on "Recent Developments of the Middle East Catalog" by Zare et al[J]. Journal of Seismology, 2017, 21(1):257-268.
[29] Rydelek P, Sacks I. Testing the Completeness of Earthquake Catalogues and the Hypothesis of Self-Similarity[J]. Nature, 1989, 337:251-253.
[30] Wiemer S, Wyss M. Minimum Magnitude of Com-pleteness in Earthquake Catalogs:Examples from Alaska, the Western United States, and Japan[J]. Bull Seism Soc Am, 2000, 90(4):859-869.
[31] Gomberg J. Seismicity and Detection Location Thres-hold in the Southern Great-Basin Seismic Network[J]. Journal of Geophysical Research-Solid Earth, 1991, 96(B10):16401-16414.
[32] 黄亦磊, 周仕勇, 庄建仓. 基于地震目录估计完备震级方法的数值实验[J]. 地球物理学报, 2016, 59(4):1350-1358. Huang Yilei, Zhou Shiyong, Zhuang Jiancang. Numerical Tests on Catalog-Based Methods to Estimate Magnitude of Completeness[J]. Chinese Journal of Geophysics, 2016, 59(4):1350-1358.
[33] Kalyoncuoglu U Y. Evaluation of Seismicity and Seis-mic Hazard Parameters in Turkey and Surrounding Area Using a New Approach to the Gutenberg-Richter Relation[J]. J Seismol, 2007, 11:131-148.
[34] Pacheco J F, Scholz C H, Sykes L R. Changes in Frequency-Size Relationship from Small to Large Earthquakes[J]. Nature, 1992, 355:71-73.
[35] Kamer Y, Hiemer S. Data-Driven Spatial b Value Estimation with Applications to California Seismicity:To b or not to b[J]. Geophysical Research Letters, 2015, 120(7):5191-5214.
[36] Scholz C H. Microfracturing and the Inelastic Defor-mation of Rock in Compression[J]. Journal of Geophysical Research, 1968, 73(4):1417-1432.
[37] El-Isa Z H, Eaton D W. Spatiotemporal Variations in the b-Value of Earthquake Magnitude-Frequency Distributions:Classification and Causes[J]. Tectonophysics, 2014, 615/616:1-11.
[38] Ishibe T, Tsuruoka H, Shimazaki K. The Depen-dency of the b-Value on the Focal Mechanism and on the Hypocentral Depth[R]. Chiba:Japan Geoscience Union, 2008.
[39] Ghosh A, Newman A V, Thomas A M, et al. Interface Locking Along the Subduction Megathrust from b-Value Mapping Near Nicoya Peninsula, Costa Rica[J]. Geophysical Research Letters, 2008, 35(L01301):1-6.
[40] Power J A, Wyss M, Latchman J L. Spatial Variations in the Frequency-Magnitude Distribution of Earthquakes at Soufriere Hills Volcano, Montserrat, West Indies[J]. Geophysical Research Letters, 1998, 25(19):3653-3656.
[41] Bachmann C E, Wiemer S, Goertz-Allmann B P, et al. Influence of Pore-Pressure on the Event-Size Distribution of Induced Earthquakes[J]. Geophysical Research Letters, 2012, 39(9):L09302.
[1] 刘财,郑确,田有,柳云龙,冯晅. 辽宁海城及其邻区地震活动性研究[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1348-1356.
[2] 陈为涛,甘卫军,万永革,肖根如,孟令超. 青藏高原东北缘4个强震重点监视区库仑破裂应力的近百年变化和危险性分析[J]. 吉林大学学报(地球科学版), 2013, 43(2): 494-505.
[3] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641-645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!