吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1845-1853.doi: 10.13278/j.cnki.jjuese.20170220

• 地球探测与信息技术 • 上一篇    

全拖曳式深海直流电阻率法三维任意各向异性正演模拟

杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-01 发布日期:2018-11-26
  • 通讯作者: 殷长春(1965-),男,教授,国家"千人计划"特聘专家,主要从事电磁勘探理论,特别是航空和海洋电磁方面的研究,E-mail:yinchangchun@jlu.edu.cn E-mail:yinchangchun@jlu.edu.cn
  • 作者简介:杨志龙(1991-),男,硕士研究生,主要从事电磁三维正反演和智能信息提取研究,E-mail:zhilongyang_2015@163.com
  • 基金资助:
    国家自然科学基金项目(41530320,41774125);国家重点研发计划重点专项(2016YFC0303100,2017YFC0601900)

3-D Arbitrarily Anisotropic Modeling for Towed Marine DC Resistivity Method in Deep Ocean

Yang Zhilong, Yin Changchun, Zhang Bo, Liu Yunhe, Ren Xiuyan, Hui Zhejian   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-01 Published:2018-11-26
  • Supported by:
    Supported by National Nature Science Foundation of China (41530320, 41774125) and Key National Research Project of China (2016YFC0303100, 2017YFC0601900)

摘要: 高精度、高效率的深海勘探是当前国家海洋资源勘探开发的研究热点之一,设计观测效率高、勘探成本低的探测方式,开发可精确计算海底复杂电性环境的正演模拟算法有助于推进该研究的进展。本文基于前人的研究经验,引入了全拖曳式深海直流电阻率观测方式,同时考虑到海底沉积环境的电各向异性,开发了基于非结构有限元方法的三维任意各向异性深海直流电阻率正演算法,实现了对海底任意电各向异性情况的仿真模拟。本文算法与层状一维模型半解析解的对比验证了算法的精度。对典型各向异性电性模型的仿真模拟和分析,证明了全拖曳式深海探测方式对海底沉积层和矿产资源电各向异性的高分辨率。在此基础上,总结了电导率各向异性主轴沿笛卡尔坐标旋转时视电阻率分布也发生同方向旋转的视电阻率分布特征,并根据海底地形对各向异性探测的影响进行了简单探讨。

关键词: 直流电阻率法, 全拖曳式深海探测, 非结构有限元, 电各向异性

Abstract: Deep-sea exploration with high precision is one of the research focuses in marine exploration. The traditional exploration by using a towed transmitter in seawater while positioning receiver at seafloor has the defects that the receivers can easily get lost, the data are instable, and the survey electrodes are influenced by ocean topography. In order to solve these problems, we designed an exploration technique with high working efficiency,reliability and low exploration cost, and developed a 3D DC forward modelling algorithm for accurately recognizing the electric characteristics of the sediment and mineral sources. Based on the previous researches, we put forwarded a towed marine DC resistivity method, and presented a 3D anisotropic forward modelling algorithm for deep-sea DC resistivity method by using finite-elements on unstructured grids for a fully towed DC system with considering the anisotropy of sea sediments at the ocean bottom. We checked the accuracy of our algorithm against 1D semi-analytical solutions for an arbitrarily anisotropic sea bottom. Through the numerical experiment analyses on typical anisotropic models, we demonstrated the high resolution of DC resistivity to the anisotropy of seafloor sediments and minerals. Based on these simulations, we summarized the characteristics of the apparent resistivity when the axis of the anisotropic conductivity rotted around the Descartes coordinate axis, and discussed the influence of the submarine topography on the anisotropic explorations.

Key words: DC resistivity method, towed deep-sea exploration, unstructured finite-element, electrical anisotropy

[1] Chevallier M, Lagabrielle R. Prospection Electrique Par Courant Continu en Site Aquatique[J]. Bulletin de Liason des Laboretoires des Ponts et Chaussees, 1991, 171:57-62.
[2] Hakim M,Sibony N. Resistivity at Sea:Inversion and Interpretation of Measurements[J]. SEG Technical Program Expanded Abstracts, 1987, 6(1):94-95.
[3] Rosenberger A,Weidelt P. Design and Application of a New Free Fall in Situ Resistivity Probe for Marine Deep Water Sediment[J]. Marine Geology, 1999, 160(3/4):327-337.
[4] Edwards R N, Chave A D. Atransient Electric Dipole-Dipole Method for Mapping the Conductivity of the Sea Floor[J]. Geophysics, 1986, 51(4):984-987.
[5] Cheosman S J, Edwards R N, Chave A D. On the Theory of Sea-Floor Conductivity Mapping Using Transient Electromagnetic System[J]. Geophysics, 1987, 52(2):204-217.
[6] Edwards R N. Two-Dimensional Modelling of a Towed In-Line Electric Dipole-Dipole Sea-Floor Electromagnetic System:The Optimum Time Delay or Frequency for Target Resolution[J]. Geophysics, 1988, 53(6):846-853.
[7] 葛为中. 层状介质点源电场正演解析及其应用[J]. 地球物理学报, 1994, 37(增刊1):534-541. Ge Weizhong. The Forward Solution of the Electrical Field due to a Point Source in Layered Media and Its Applications[J]. Chinese Journal of Geophysics, 1994, 37(Sup. 1):534-541.
[8] 葛为中.水下电测深的理论计算和解释方法[J]. 桂林工学院学报, 1998, 18(2):172-175. Ge Weizhong. Theoretical Calculation and Interpretation Method of Underwater Electrical Sounding[J]. Journal of Guilin Institute of Technology, 1998, 18(2):172-175.
[9] 王自民. 水上直流电测深法勘探的应用[J]. 桂林工学院学报, 1997, 17(增刊1):23-25. Wang Zimin. Application of Water Direct Current Sounding Method[J]. Journal of Guilin Institute of Technology, 1997, 17(Sup. 1):23-25.
[10] 黄俊革, 阮百尧, 鲍光淑.水下直流电阻率法数值模拟[J]. 物探化探计算技术, 2004, 26(2):136-140. Huang Junge, Ruan Baiyao, Bao Guangshu, et al. DC Resistivity Numerical Modelling Underwater[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(2):136-140.
[11] 翁爱华, 祝嗣安.天然气水合物的近海底直流电测深响应[J]. 石油地球物理勘探, 2010, 45(3):458-461. Weng Aihua, Zhu Sian. Near Sea-Bottom DC Sounding Response for Gas Hydrate[J]. Oil Geophysical Prospecting, 2010, 45(3):458-461.
[12] 刘长胜, 林君. 海底表面磁源瞬变响应建模及海水影响分析[J]. 地球物理学报, 2006, 49(6):1891-1898. Liu Changsheng, Lin Jun. Transient Electromagnetic Response Modelling of Magnetic Source on Seafloor and the Analysis of Eeawater Effect[J]. Chinese Journal of Geophysics, 2006, 49(6):1891-1898.
[13] 李慧. 海洋瞬变响应理论计算及浅海底瞬变电磁探测技术研究[D]. 长春:吉林大学,2006:27-48. Li Hui. Theoretical Calculation of Marine Transient Electromagnetic Response and Research of Shallow Sea-Sloor Detection Technology[D]. Changchun:Jilin University, 2006:27-48.
[14] 周胜, 席振铢, 宋刚, 等. 深海拖曳式瞬变电磁的响应规律[J]. 中南大学学报(自然科学版), 2012, 43(2):605-610. Zhou Sheng, Xi Zhenzhu, Song Gang, et al. Responses of the Towed Transient Electromagnetic Sounding on Deep Sea[J]. Journal of Central South University (Science and Technology), 2012, 43(2):605-610.
[15] 何继善, 鲍力知. 海洋电磁法研究的现状和进展[J]. 地球物理学进展, 1999, 14(1):7-39. He Jishan, Bao Lizhi. Present Situation and Progress of Marine Electromagnetic Research[J]. Progress in Geophysics, 1999, 14(1):7-39.
[16] Herwanger J V, Pain C C, Binley A, et al. Aniso-tropic Resistivity Tomography[J]. Geophysical Journal International, 2004, 158(2):409-425.
[17] Habberjam G. Apparent Resistivity, Anisotropy and Strike Measurements[J]. Geophysical Prospecting, 1975, 23(2):211-247.
[18] Wait J R. Current Flow into a Three-Dimensionally Anisotropic Conductor[J]. Radio Science, 1990, 25(5):689-694.
[19] Li P, Uren N. Analytical Solution for the Point Source Potential in an Anisotropic 3-D Half-Sapce:Ι:Two-Horizontal-Layer Case[J]. Mathematical and Computer Modelling, 1997, 26(5):9-27.
[20] Yin C, Weidelt P. Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 1999, 64(2):426-434.
[21] Yin C, Maurer H M. Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2001, 66(5):1405-1416.
[22] Yin C. Geoelectrical Inversion for a One-Dimensional Anisotropic Model and Inherent Non-Uniqueness[J]. Geophysical Journal International, 2000, 140(1):11-23.
[23] 金建铭. 电磁场有限元法[M]. 西安:西安电子科技大学出版社, 2014. Jin Jianming. The Finite Element Method in Electromagnetics[M]. Xi'an:Xidian University Press, 2014.
[24] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634. Ren Zhengyong, Tang Jingtian. 2.5-D DC Resistivity Modeling by Adaptive Finite-Element Method with Unstructured Triangulation[J]. Chinese Journal Geophysics, 2009, 52(10):2627-2634.
[25] Hang S. A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator[D]. Berlin:Weierstrass Institute for Applied Analysis and Stochastic, 2006.
[26] Ren Z, Tang J. A Goal-Oriented Adaptive Finite-Element Approach for Multi-Electrode Resistivity System[J]. Geophysical Journal International, 2014, 199(1):136-145.
[27] Rücker C, Günther T,Spitzer K, et al. Three-Di-mensional Modelling and Inversion of DC Resistivity Data Incorporating Topography:Ι:Modelling[J]. Geophysical Journal International, 2006, 166(2):495-505.
[28] Yin C, Zhang P, Cai J, et al. Forward Modelling of Marine DC Resistivity Method for a Layered Anisotropic Earth[J]. Applied Geophysical, 2016, 13(2):279-287.
[29] 罗婕, 田学达, 魏雪峰, 等. 深海锰结核资源的研究进展[J]. 中国锰业, 2004, 22(4):6-9. Luo Jie, Tian Xueda, Wei Xuefeng, et al. Advance of Study on the Deep-Sea Manganese Nodule[J]. China's Manganese Industry, 2004, 22(4):6-9.
[30] 贲放, 刘云鹤, 黄威, 等. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2):581-593. Ben Fang, Liu Yunhe, Huang Wei, et al. MCSEM Response for Anisotropic Media in Shallow Water[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):581-593.
[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 刘斌, 李术才, 李树忱, 聂利超, 钟世航, 宋杰, 刘征宇. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. J4, 2012, 42(1): 246-253.
[3] 杨春梅, 张吉昌. 成因机理控制下的低电阻率油层发育特征及地质目标优选[J]. J4, 2009, 39(2): 328-0333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!