吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 746-754.doi: 10.13278/j.cnki.jjuese.20170238

• 地质工程与环境工程 • 上一篇    下一篇

基于邻域粗糙集和支持向量机的固结系数预测

尹超1,2, 周爱红2, 袁颖2, 王帅伟3   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 河北地质大学勘查技术与工程学院, 石家庄 050031;
    3. 中国地质科学院水文地质环境地质研究所, 石家庄 050061
  • 收稿日期:2017-12-18 出版日期:2019-06-03 发布日期:2019-06-03
  • 通讯作者: 周爱红(1976-),女,教授,博士,主要从事工程地质、岩土工程方面的研究,E-mail:sensiblecall@163.com E-mail:sensiblecall@163.com
  • 作者简介:尹超(1989-),男,博士研究生,主要从事地震工程、岩土工程方面的研究,E-mail:robinyc@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41301015);河北省教育厅重点项目(ZD2015073,ZD2016038)

Prediction of Consolidation Coefficient Based on Neighborhood Rough Set and Support Vector Machine

Yin Chao1,2, Zhou Aihong2, Yuan Ying2, Wang Shuaiwei3   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. School of Prospecting Technology & Engineering, Hebei GEO University, Shijiazhuang 050031, China;
    3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China
  • Received:2017-12-18 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41301015) and Key Projects of Hebei Province Education Department(ZD2015073,ZD2016038)

摘要: 采用邻域粗糙集和支持向量机建立滹沱河某地区软土固结系数的预测模型。基于自行改装的渗透固结仪,利用公式法确定不同压力下的固结系数。通过室内试验确定土体的指标参数,采用邻域粗糙集对该指标参数进行属性约简,将约简后的指标参数作为影响因素,分别建立支持向量机和神经网络的固结系数预测模型,预测未知样本的固结系数,并与实测值进行对比。结果表明:公式法可以准确客观地确定固结系数;支持向量机和BP神经网络建立的该地区软土固结系数预测模型均可以预测区域内未知点的固结系数,且支持向量机方法的预测精度比神经网络方法的预测精度提高了约10%。本文提出的方法直接从实验数据出发,通过易获取的影响因素建立特定地区固结系数预测模型,并可预测该区域其余未知点的固结系数。

关键词: 固结系数, 预测模型, 支持向量机, 邻域粗糙集, 渗透固结仪

Abstract: The prediction model of soft soil consolidation coefficient in Hutuo River was established by neighborhood rough set (NRS) and support vector machine(SVM). Based on the modified osmotic oedometer, the consolidation coefficient was determined under different pressures. The soil indices were determined by laboratory tests,and the attributes were reduced by NRS method. Subsequently, by taking the reduced indices as the influencing factors; the prediction model of consolidation coefficient by SVM and back propagation neural network (BPNN) was used to predict the consolidation coefficient of unknown samples,and the results were compared with the measured values. The results show that:the consolidation coefficient can be determined by formula method. The consolidation coefficient prediction model established by SVM and BPNN can be applied to predict the consolidation coefficients, and the prediction accuracy of SVM is about 10% higher than that of BPNN. The results are validated by the standard solution. In summary, the method presented is based on experimental data, the prediction model of consolidation coefficient is established through easily accessible factors, and can predict the consolidation coefficient of other unknown points in this area.

Key words: consolidation coefficient, prediction model, support vector machine, neighbourhood rough set, osmotic oedometer

中图分类号: 

  • TU411
[1] Terzaghi K. Theoretical Soil Mechanics[M]. New York:John Wiley and Sons, 1943.
[2] Duncan J M. Limitation of Conventional Analysis of Consolidation Settlement[J]. Journal of Geotechnical Engineering Division, ASCE, 1993, 199(9):1333-1359.
[3] Olson R E. Settlement of Embankments on Soft Clays[J]. Journal of Geotechnical Engineering, ASCE, 1998, 124(4):278-288.
[4] Lowe J, Jonas E, Obrician V. Controlled Gradient Consolidation Test[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1969, 95(Sup.1):77-97.
[5] 吴义祥. 固结过程中固结系数Cv的变化及其对地面沉降预测的影响[J]. 水文地质工程地质,1988(2):47-49. Wu Yixiang. Change of Consolidation Coefficient and Its Influence on Land Subsidence Forecasting[J]. Hydrogeology & Engineering Geology, 1988(2):47-49.
[6] 林鹏, 许镇鸿, 徐鹏,等. 软土压缩过程中固结系数的研究[J]. 岩土力学, 2003, 24(1):106-112. Lin Peng, Xu Zhenhong, Xu Peng, et al. Research on Consolidation Coefficient of Soft Clay Under Compression[J]. Rock and Soil Mechanics, 2003, 24(1):106-112.
[7] 余闯, 刘松玉. 考虑应力水平的软土固结系数计算与试验研究[J]. 岩土力学, 2004, 25(增刊2):103-107. Yu Chuang, Liu Songyu. Calculation and Experiment on Consolidation Coefficient for Soft Clay Considering Different Stress Levels[J]. Rock and Soil Mechanics, 2004, 25(Sup.2):103-107.
[8] 土工试验规程:SL237-1999[S]. 北京:中国水利水电出版社, 1999. The Civil Engineering Experiment:SL237-1999[S]. Beijing:China Water & Power Press, 1999.
[9] 卢文喜, 郭家园, 董海彪, 等. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5):1511-1519. Lu Wenxi, Guo Jiayuan, Dong Haibiao, et al. Evaluating Mine Geology Environmental Quality Using Improved SVM Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1511-1519.
[10] 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017,47(2):580-588. Zhang Dailei, Huang Danian, Zhang Chong. Application of BP Neural Network Based on Genetic Algorithm in the Inversion of Density Interface[J]. Journal of Jilin University (Earth Science Edition), 2017,47(2):580-588.
[11] 王常明, 田书文, 王翊虹, 等. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4):1168-1175. Wang Changming, Tian Shuwen, Wang Yihong, et al. Risk Assessment of Debris Flow:A Method of SVM Based on FCM[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1168-1175.
[12] 许小健, 干洪, 张金轮. 差分进化算法及其在固结系数计算中的应用[J]. 地下空间与工程学报,2010, 6(5):958-963,974. Xu Xiaojian, Gan Hong, Zhang Jinlun. Differential Evolution and Its Application in Computing Consolidation Coefficient[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5):958-963,974.
[13] 包太, 刘新荣. 改进的遗传算法求解固结系数[J]. 土木建筑与环境工程, 2009, 31(1):23-26. Bao Tai, Liu Xinrong. Consolidation Coefficient Evaluation Using an Improved Genetic Algorithm[J]. Journal of Civil Architectural & Environmental Engineering, 2009, 31(1):23-26.
[14] 江刚. 遗传算法在固结系数计算中的应用[J]. 土木建筑与环境工程, 2006, 28(1):71-73. Jiang Gang. Genetic Algorithm for the Consolidation Coefficient Evaluation[J]. Journal of Civil Architectural & Environmental Engineering, 2006, 28(1):71-73.
[15] Chen Jiangong, Zhang Yongxing. A Neural Network Method to Evaluate Consolidation Coefficient[J]. Journal of Chongqing University, 2003, 2(1):1-4.
[16] Zhu Honghu, Fu Jianping, Dai Fei. Application of BP Neural Networks in the Prediction of Consolidation Coefficient[C]//IEEE. Advances in Computational Tool for Engineering Applications of the International Conference on IEEE, Lebanon:Zouk Mosbeh, 2009:443-446.
[17] 师旭超, 汪稔, 胡元育,等.渗透固结试验装置的研制[J].岩石力学与工程学报, 2004, 23(22):3891-3895. Shi Xuchao, Wang Ren, Hu Yuanyu, et al. Development of Osmotic Oedometer[J].Chinese Journal of Rock Mechanics and Engineering, 2004,23(22):3891-3895.
[18] 孙丽云, 乐金朝, 刘忠玉,等. 渗透固结试验装置的改进[J]. 实验力学,2010,25(3):353-358. Sun Liyun, Yue Jinchao, Liu Zhongyu, et al. The Improvement of Osmotic Oedometer[J]. Journal of Experimental Mechanics, 2010, 25(3):353-358.
[19] 周爱红, 尹超, 袁颖. 基于主成分分析和支持向量机的砂土渗透系数预测模型[J]. 云南大学学报(自然科学版), 2016, 38(5):742-749. Zhou Aihong, Yin Chao, Yuan Ying. A Permeability Coefficient Prediction Model of Sand Soil Based on Principal Component Analysis and Support Vector Machine[J]. Journal of Yunnan University (Natural Science Edition), 2016, 38(5):742-749.
[20] 曾巧玲, 张惠明, 陈尊伟,等. 软黏土固结系数确定方法探讨[J]. 岩土力学, 2010, 31(7):2083-2110. Zeng Qiaoling, Zhang Huiming, Chen Zunwei, et al. Discussion on Computational Methods for Determining Consolidation Coefficient of Soft Clay[J]. Rock and Soil Mechanics, 2010, 31(7):2083-2110.
[21] Hu Qinghua, Yu Daren, Xie Zongxia. Neighborhood Classifiers[J]. Expert Systems with Applications, 2008, 34(2):866-876.
[22] 胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008, 19(3):640-649. Hu Qinghua, Yu Daren, Xie Zongxia. Numerical Attribute Reduction Based on Neighborhood Granulation and Rough Approximation[J]. Journal of Software, 2008, 19(3):640-649.
[23] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京:科学出版社, 2004:117-122. Deng Naiyang, Tian Yingjie. A New Method in Data Mining:Support Vector Machine[M]. Beijing:Science Press, 2004:117-122.
[24] 邰淑彩,孙韫玉,何娟娟. 应用数理统计[M]. 武汉:武汉大学出版社,248-266. Tai Shucai, Sun Yunyu, He Juanjuan. Applied Mathematical Statistics[M]. Wuhan:Wuhan University Press, 248-266.
[25] 张向东,冯胜洋,王长江. 基于网格搜索的支持向量机砂土液化预测模型[J]. 应用力学学报,2011,28(1):24-28,107. Zhang Xiangdong, Feng Shengyang, Wang Changjiang. Support Vector Machine Model for Predicting Sand Liquefaction Based on Grid-Search Method[J]. Chinese Journal of Applied Mechanics, 2011, 28(1):24-28,107.
[26] 王小川, 史峰, 郁磊,等. MATLAB神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013:102-119. Wang Xiaochuan, Shi Feng, Yu Lei, et al. 43 Cases Analysis of MATLAB Neural Network[M]. Beijing:Beihang University Press, 2013:102-119.
[1] 吴云霞, 吕凤军, 邢立新, 刘新星. 独山城地区多元信息干热岩预测模型[J]. 吉林大学学报(地球科学版), 2019, 49(3): 880-892.
[2] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 611-620.
[3] 徐守余, 路研, 王亚. 基于支持向量机的浊积扇低渗透储层流动单元研究[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1330-1341.
[4] 王常明, 张索煜, 李硕. 伊通软土的次固结特性[J]. 吉林大学学报(地球科学版), 2018, 48(3): 799-804.
[5] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[6] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[7] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[8] 王常明, 田书文, 王翊虹, 阮云凯, 丁桂伶. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1168-1175.
[9] 张延军, 余海, 李建明, 于子望, 张佳宁. 深部水热型地热潜力区的GIS预测模型——以土耳其西安纳托利亚地区为例[J]. 吉林大学学报(地球科学版), 2016, 46(3): 855-864.
[10] 杨雪峰, 王雪梅, 毛东雷. 塔里木河下游土地利用覆被MISR多角度遥感制图[J]. 吉林大学学报(地球科学版), 2016, 46(2): 617-626.
[11] 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568.
[12] 牟丹, 王祝文, 黄玉龙, 许石, 周大鹏. 基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例[J]. 吉林大学学报(地球科学版), 2015, 45(2): 639-648.
[13] 蔡煜琦,徐浩,郭庆银,朱鹏飞,汪远志,谢迎春. 江西省桃山地区花岗岩型铀矿预测及找矿方向[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1283-1291.
[14] 黄国成,董学发,吴小勇,李翔. 浙江省临安学川地区综合找矿预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1276-1282.
[15] 彭翼,何玉良,曾涛,钟江文,许国丽,苏小岩,谌军,彭松民,李震. 河南省Mo矿区域成矿模式与综合信息预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1262-1275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!