吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 773-783.doi: 10.13278/j.cnki.jjuese.20170304
董林垚1,2, 任洪玉1,2, 雷俊山3, 刘纪根1,2
Dong Linyao1,2, Ren Hongyu1,2, Lei Junshan3, Liu Jigen1,2
摘要: 为构建温度示踪方法测算地下水流速技术体系,并应用于区域地下水资源评价,基于最小二乘法和垂向一维非稳定流水-热运移方程数值解法,提出地表暖化情形下地下水流速计算方法,并对雷州半岛东北部地下水流速进行测算。结果表明:研究区域地下水补给速度为0.796 m/a,入渗以西北部降水和运河渗漏为主;地下水排泄速度为0.269 m/a,排泄入海主要发生在东海岛、南三岛和硵州岛附近。温度示踪解析区域地下水流动情况与地下水位分布情况基本一致,观测和计算地温数据具有较强相关性(R2>0.50)和较低均方根误差(均值0.748),表明提出方法率定得到的地下水流速具有较强的可靠性。参数敏感性分析结果表明,地质体热扩散率和地表温度均对地温计算结果产生较明显的影响,参数的准确率定对利用地温计算地下水流速十分重要。
中图分类号:
[1] 吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J].水科学进展, 2011,22(5):733-740. Wu Zhiwei, Song Hanzhou. Temperature as a Groundwater Tracer:Advances in Theory and Methodology[J]. Advances in Water Science, 2011,22(5):733-740. [2] Anderson M P. Heat as a Ground Water Tracer[J]. Ground Water, 2005, 43(6):951-968. [3] Taniguchi M, Shimada J, Tanaka T, et al. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:1:An Effect of Linear Increase in Surface Temperature Caused by Global Warming and Urbanization in Tokyo, Metropolitan Area, Japan[J]. Water Resource Research, 1999, 35(5):1507-1517. [4] Taniguchi M, Uemura T, Jago-on K. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities[J]. Vadose Zone Journal, 2007, 6:591-596. [5] Anibas C, Fleckenstein J H, Volze N, et al. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange[J]. Hydrological Processes, 2009, 23:2165-2177. [6] 马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J].地质科技情报, 2013,32(2):131-137. Ma Rui, Dong Qiming, Sun Ziyong, et al. Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review[J]. Geological Science and Technology Information, 2013,32():131-137. [7] 朱静思, 束龙仓, 鲁程鹏. 基于热追踪方法的河道垂向潜流通量的非均质性研究[J]. 水利学报, 2013,44(7):818-825. Zhu Jingsi, Shu Longcang, Lu Chengpeng. Study on the Heterogeneity of Vertical Hyporheic Flux Using a Heat Tracing Method[J]. Shuili Xuebao, 2013,44(7):818-825. [8] 李英玉, 赵坚, 吕辉, 等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展, 2016, 27(3):423-429. Li Yingyu, Zhao Jian, Lü Hui, et al. Investigation on Temperature Tracer Method Calculated Flow Rate of Hyporheic Layer in Riparian Zone[J]. Advances in Water Science, 2016, 27(3):423-429. [9] Taniguchi M. Evaluation of Vertical Groundwater Fluxes and Thermal Properties of Aquifers Based on Transient Temperature-Depth Profiles[J]. Water Resources Research, 1993, 29(7):2021-2026. [10] Constantz J, Su G W, Seymour D, et al. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperature[J]. Ground Water, 2004, 42(6/7):890-902. [11] 李端有, 陈鹏霄, 王志旺. 温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J]. 长江科学院院报, 2000, 17(增刊):48-51. Li Duanyou, Chen Pengxiao, Wang Zhiwang. Application of Temperature Indication Method in Seepage Monitoring of Yangtze River Levee[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(Sup.):48-51. [12] 董海洲, 陈建生. 利用温度示踪方法探测基坑渗漏[J]. 岩石力学与工程学报, 2004, 23(12):2085-2090. Dong Haizhou, Chen Jiansheng. Study on Groundwater Leakage of Foundation Pit with Temperature Tracer Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12):2085-2090. [13] 王新建, 潘纪顺. 堤坝多集中渗漏通道位置温度探测研究[J]. 岩土工程学报, 2010, 32(11):1800-1805. Wang Xinjian, Pan Jishun. Location Detection of Concentrated-Leakage Passages in Dam by Groundwater Temperature[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11):1800-1805. [14] Bredehoeft J D, Papadopulos I S. Rates of Vertical Groundwater Movement Estimated from the Earth's Thermal Profile[J]. Water Resource Research, 1965, 1(2):325-328. [15] Taniguchi M, Shimada J, Uemura T. Transient Effects of Surface Temperature and Groundwater Flow on Subsurface Temperature in Kumamoto Plain, Japan[J]. Physics and Chemistry of the Earth, 2003, 28:477-486. [16] Taniguchi M, Williamson D R, Peck A J. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:2:An Effect of Step Increase in Surface Temperature Caused by Forest Clearing in Southwest Western Australia[J]. Water Resources Research, 1999, 35(5):1519-1530. [17] Menberg K, Blum P, Kurylyk B L, et al. Observed Groundwater Temperature Response to Recent Climate Change[J]. Hydrology and Earth System Sciences, 2014, 11(3):4453-4466. [18] Kurylyk B L, Macquarrie K T. A New Analytical Solution for Assessing Climate Change Impacts on Subsurface Temperature[J]. Hydrological Processes, 2014, 28(7):3161-3172. [19] Keshari A K, Koo M. A Numerical Model for Estimating Groundwater Flux from Subsurface Temperature Profiles[J]. Hydrological Processes, 2010, 21(25):3440-3448. [20] 吴志伟, 宋汉周. 基于Lu模型的浅部地温场与渗流场耦合研究[J]. 水利学报, 2015, 46(3):326-333. Wu Zhiwei, Song Hanzhou. Study on Shallow Geothermal Field and Seepage Field Coupling Based on Lu Model[J]. Shuili Xuebao, 2015, 46(3):326-333. [21] Zhou X, Chen M, Liang C. Optimal Schemes of Groundwater Exploitation for Prevention of Seawater Intrusion in the Leizhou Peninsula in Southern China[J]. Environmental Geology, 2003, 43(8):978-985. [22] Stallman R W. A Multivariate Statistical Approach to Spatial Representation of Groundwater Contamination Using Hydrochemistry and Microbial Community Profiles[J]. Environmental Science Technology, 2005, 39:7551-7559. [23] Stallman R W. Computation of Ground-Water Velocity from Temperature Data, Washington, DC, USA[C]//Ray Bentall. Methods of Collecting and Interpreting Ground-Water Data. Washington:U. S. Government Printing Office, 1963:36-46. [24] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. SIAM Journal of Applied Mathematics, 1963, 11(2):431-441. [25] Smerdon J E, Pollack H N, Cermak V, et al. Daily, Seasonal, and Annual Relationships Between Air and Subsurface Temperatures[J]. Journal of Geophysical Research-Atmospheres, 2006, 111:D07101. [26] Hachem S, Duguay C R, Allard M. Comparison of MODIS-Derived Land Surface Temperatures with Near-Surface Soil and Air Temperature Measurements in Continuous Permafrost Terrain[J]. Cryosphere, 2012, 6(1):51-69. [27] Chen Y C, Chiu H W, Su Y F. Does Urbanization Increase Diurnal Land Surface Temperature Variation? Evidence and Implications[J]. Landscape and Urban Planning, 2017, 157:247-258. [28] Taylor C A, Stefan H G. Shallow Groundwater Temperature Response to Climate Change and Urbanization[J]. Journal of Hydrology, 2009, 375:601-612. [29] 赵勇胜, 杨元元, 高鹏龙, 等. 多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤效果[J/OL]. 吉林大学学报(地球科学版). doi:10.13278/j.cnki.jjuese.20180047. Zhao Yongsheng, Yang Yuanyuan, Gao Penglong, et al. Transport Characteristics of Steam and Steam Remediatation of Chlorobenzene Contaminated Soil[J/OL]. Journal of Jinlin University(Earth Science Edition). doi:10.13278/j.cnki.jjuese.20180047. |
[1] | 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450. |
[2] | 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818. |
[3] | 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807. |
[4] | 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219. |
[5] | 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972. |
[6] | 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965. |
[7] | 何雨江,蔺文静,王贵玲. 利用TDR100系统原位监测深厚包气带水热动态[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1972-1979. |
[8] | 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930. |
[9] | 江思珉,王佩,施小清,郑茂辉. 地下水污染源反演的HookeJeeves吸引扩散粒子群混合算法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1866-1872. |
[10] | 苏小四, 谷小溪, 孟婧莹, 张文静, 王寒梅, 焦珣. 人工回灌条件下多组分溶质的反应迁移模拟[J]. J4, 2012, 42(2): 485-491. |
[11] | 王子佳, 杜新强, 冶雪艳, 宋晓明, 张加双, 高翠萍. 城市雨水地下回灌过程中悬浮物表面堵塞规律[J]. J4, 2012, 42(2): 492-498. |
[12] | 翟远征, 王金生, 郇环, 滕彦国. 北京市平原区地下水更新能力变化的动态均衡证据[J]. J4, 2012, 42(1): 198-205. |
[13] | 路莹, 杜新强, 迟宝明, 杨悦锁, 李胜涛, 王子佳. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. J4, 2011, 41(2): 448-454. |
[14] | 胡继华,张延军,于子望,吴刚,杨潇瀛,倪福全. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. J4, 2008, 38(6): 992-0998. |
[15] | 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644-0648. |
|