吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 773-783.doi: 10.13278/j.cnki.jjuese.20170304

• 地质工程与环境工程 • 上一篇    下一篇

地表暖化影响下温度示踪地下水流速方法

董林垚1,2, 任洪玉1,2, 雷俊山3, 刘纪根1,2   

  1. 1. 长江水利委员会长江科学院, 武汉 430010;
    2. 水利部山洪地质灾害防治工程技术研究中心, 武汉 430010;
    3. 长江水利委员会长江水资源保护科学研究所, 武汉 430051
  • 收稿日期:2017-12-15 出版日期:2019-06-03 发布日期:2019-06-03
  • 作者简介:董林垚(1987-),男,高级工程师,博士,主要从事水文水资源方面的研究,E-mail:linyaodonghydrol@foxmail.com
  • 基金资助:
    国家自然科学基金项目(41501037);水利部技术示范项目(SF-201806)

Temperature Tracing Method for Groundwater Flux Under Surface Warming

Dong Linyao1,2, Ren Hongyu1,2, Lei Junshan3, Liu Jigen1,2   

  1. 1. Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China;
    2. Research Center on Mountain Torrents and Geological Disaster Prevention, Ministry of Water Resources, Wuhan 430010, China;
    3. Changjiang Water Resources Protection Institute, Changjiang Water Resources Commission, Wuhan 430051, China
  • Received:2017-12-15 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China (41501037) and Technology Demonstration Project of Ministry of Water Resources(SF-201806)

摘要: 为构建温度示踪方法测算地下水流速技术体系,并应用于区域地下水资源评价,基于最小二乘法和垂向一维非稳定流水-热运移方程数值解法,提出地表暖化情形下地下水流速计算方法,并对雷州半岛东北部地下水流速进行测算。结果表明:研究区域地下水补给速度为0.796 m/a,入渗以西北部降水和运河渗漏为主;地下水排泄速度为0.269 m/a,排泄入海主要发生在东海岛、南三岛和硵州岛附近。温度示踪解析区域地下水流动情况与地下水位分布情况基本一致,观测和计算地温数据具有较强相关性(R2>0.50)和较低均方根误差(均值0.748),表明提出方法率定得到的地下水流速具有较强的可靠性。参数敏感性分析结果表明,地质体热扩散率和地表温度均对地温计算结果产生较明显的影响,参数的准确率定对利用地温计算地下水流速十分重要。

关键词: 温度示踪, 地下水流速, 地表暖化, 数值解, 雷州半岛

Abstract: In order to construct the technical system of groundwater velocity calculation using heat Abstract:A least square solver was presented for groundwater flux estimation in one-dimensional conduction advection equation solved numerically with MacCormack scheme. This approach was utilized to estimate the groundwater fluxes of the observed borehole under the effect of ground surface temperature (GST) in both rural and urban areas in Leizhou Peninsula, China. The estimated average groundwater recharge rate is 0.796 m/a, while the average discharge rate is 0.269 m/a. The groundwater recharges occur in the north part of the study area; while the discharges occur near Nansan, Donghai and Luzhou Islands, which fit favorably with the local groundwater flow pattern. Relatively high correlations and low RMSE were detected between the observed and computed borehole temperature-depth profiles, indicating that the estimation is reasonable. The sensitivity analysis of surface temperature and thermal diffusivity of geological bodies and GST indicates that the evaluation of subsurface heat island effects is very important for improving the precision of groundwater flux estimation by using borehole temperatures.

Key words: heat tracer, groundwater flux, surface warming, numerical solution, Leizhou Peninsula

中图分类号: 

  • P641.2
[1] 吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J].水科学进展, 2011,22(5):733-740. Wu Zhiwei, Song Hanzhou. Temperature as a Groundwater Tracer:Advances in Theory and Methodology[J]. Advances in Water Science, 2011,22(5):733-740.
[2] Anderson M P. Heat as a Ground Water Tracer[J]. Ground Water, 2005, 43(6):951-968.
[3] Taniguchi M, Shimada J, Tanaka T, et al. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:1:An Effect of Linear Increase in Surface Temperature Caused by Global Warming and Urbanization in Tokyo, Metropolitan Area, Japan[J]. Water Resource Research, 1999, 35(5):1507-1517.
[4] Taniguchi M, Uemura T, Jago-on K. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities[J]. Vadose Zone Journal, 2007, 6:591-596.
[5] Anibas C, Fleckenstein J H, Volze N, et al. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange[J]. Hydrological Processes, 2009, 23:2165-2177.
[6] 马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J].地质科技情报, 2013,32(2):131-137. Ma Rui, Dong Qiming, Sun Ziyong, et al. Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review[J]. Geological Science and Technology Information, 2013,32():131-137.
[7] 朱静思, 束龙仓, 鲁程鹏. 基于热追踪方法的河道垂向潜流通量的非均质性研究[J]. 水利学报, 2013,44(7):818-825. Zhu Jingsi, Shu Longcang, Lu Chengpeng. Study on the Heterogeneity of Vertical Hyporheic Flux Using a Heat Tracing Method[J]. Shuili Xuebao, 2013,44(7):818-825.
[8] 李英玉, 赵坚, 吕辉, 等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展, 2016, 27(3):423-429. Li Yingyu, Zhao Jian, Lü Hui, et al. Investigation on Temperature Tracer Method Calculated Flow Rate of Hyporheic Layer in Riparian Zone[J]. Advances in Water Science, 2016, 27(3):423-429.
[9] Taniguchi M. Evaluation of Vertical Groundwater Fluxes and Thermal Properties of Aquifers Based on Transient Temperature-Depth Profiles[J]. Water Resources Research, 1993, 29(7):2021-2026.
[10] Constantz J, Su G W, Seymour D, et al. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperature[J]. Ground Water, 2004, 42(6/7):890-902.
[11] 李端有, 陈鹏霄, 王志旺. 温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J]. 长江科学院院报, 2000, 17(增刊):48-51. Li Duanyou, Chen Pengxiao, Wang Zhiwang. Application of Temperature Indication Method in Seepage Monitoring of Yangtze River Levee[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(Sup.):48-51.
[12] 董海洲, 陈建生. 利用温度示踪方法探测基坑渗漏[J]. 岩石力学与工程学报, 2004, 23(12):2085-2090. Dong Haizhou, Chen Jiansheng. Study on Groundwater Leakage of Foundation Pit with Temperature Tracer Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12):2085-2090.
[13] 王新建, 潘纪顺. 堤坝多集中渗漏通道位置温度探测研究[J]. 岩土工程学报, 2010, 32(11):1800-1805. Wang Xinjian, Pan Jishun. Location Detection of Concentrated-Leakage Passages in Dam by Groundwater Temperature[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11):1800-1805.
[14] Bredehoeft J D, Papadopulos I S. Rates of Vertical Groundwater Movement Estimated from the Earth's Thermal Profile[J]. Water Resource Research, 1965, 1(2):325-328.
[15] Taniguchi M, Shimada J, Uemura T. Transient Effects of Surface Temperature and Groundwater Flow on Subsurface Temperature in Kumamoto Plain, Japan[J]. Physics and Chemistry of the Earth, 2003, 28:477-486.
[16] Taniguchi M, Williamson D R, Peck A J. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:2:An Effect of Step Increase in Surface Temperature Caused by Forest Clearing in Southwest Western Australia[J]. Water Resources Research, 1999, 35(5):1519-1530.
[17] Menberg K, Blum P, Kurylyk B L, et al. Observed Groundwater Temperature Response to Recent Climate Change[J]. Hydrology and Earth System Sciences, 2014, 11(3):4453-4466.
[18] Kurylyk B L, Macquarrie K T. A New Analytical Solution for Assessing Climate Change Impacts on Subsurface Temperature[J]. Hydrological Processes, 2014, 28(7):3161-3172.
[19] Keshari A K, Koo M. A Numerical Model for Estimating Groundwater Flux from Subsurface Temperature Profiles[J]. Hydrological Processes, 2010, 21(25):3440-3448.
[20] 吴志伟, 宋汉周. 基于Lu模型的浅部地温场与渗流场耦合研究[J]. 水利学报, 2015, 46(3):326-333. Wu Zhiwei, Song Hanzhou. Study on Shallow Geothermal Field and Seepage Field Coupling Based on Lu Model[J]. Shuili Xuebao, 2015, 46(3):326-333.
[21] Zhou X, Chen M, Liang C. Optimal Schemes of Groundwater Exploitation for Prevention of Seawater Intrusion in the Leizhou Peninsula in Southern China[J]. Environmental Geology, 2003, 43(8):978-985.
[22] Stallman R W. A Multivariate Statistical Approach to Spatial Representation of Groundwater Contamination Using Hydrochemistry and Microbial Community Profiles[J]. Environmental Science Technology, 2005, 39:7551-7559.
[23] Stallman R W. Computation of Ground-Water Velocity from Temperature Data, Washington, DC, USA[C]//Ray Bentall. Methods of Collecting and Interpreting Ground-Water Data. Washington:U. S. Government Printing Office, 1963:36-46.
[24] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. SIAM Journal of Applied Mathematics, 1963, 11(2):431-441.
[25] Smerdon J E, Pollack H N, Cermak V, et al. Daily, Seasonal, and Annual Relationships Between Air and Subsurface Temperatures[J]. Journal of Geophysical Research-Atmospheres, 2006, 111:D07101.
[26] Hachem S, Duguay C R, Allard M. Comparison of MODIS-Derived Land Surface Temperatures with Near-Surface Soil and Air Temperature Measurements in Continuous Permafrost Terrain[J]. Cryosphere, 2012, 6(1):51-69.
[27] Chen Y C, Chiu H W, Su Y F. Does Urbanization Increase Diurnal Land Surface Temperature Variation? Evidence and Implications[J]. Landscape and Urban Planning, 2017, 157:247-258.
[28] Taylor C A, Stefan H G. Shallow Groundwater Temperature Response to Climate Change and Urbanization[J]. Journal of Hydrology, 2009, 375:601-612.
[29] 赵勇胜, 杨元元, 高鹏龙, 等. 多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤效果[J/OL]. 吉林大学学报(地球科学版). doi:10.13278/j.cnki.jjuese.20180047. Zhao Yongsheng, Yang Yuanyuan, Gao Penglong, et al. Transport Characteristics of Steam and Steam Remediatation of Chlorobenzene Contaminated Soil[J/OL]. Journal of Jinlin University(Earth Science Edition). doi:10.13278/j.cnki.jjuese.20180047.
[1] 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450.
[2] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[3] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[4] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[5] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[6] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[7] 何雨江,蔺文静,王贵玲. 利用TDR100系统原位监测深厚包气带水热动态[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1972-1979.
[8] 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930.
[9] 江思珉,王佩,施小清,郑茂辉. 地下水污染源反演的HookeJeeves吸引扩散粒子群混合算法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1866-1872.
[10] 苏小四, 谷小溪, 孟婧莹, 张文静, 王寒梅, 焦珣. 人工回灌条件下多组分溶质的反应迁移模拟[J]. J4, 2012, 42(2): 485-491.
[11] 王子佳, 杜新强, 冶雪艳, 宋晓明, 张加双, 高翠萍. 城市雨水地下回灌过程中悬浮物表面堵塞规律[J]. J4, 2012, 42(2): 492-498.
[12] 翟远征, 王金生, 郇环, 滕彦国. 北京市平原区地下水更新能力变化的动态均衡证据[J]. J4, 2012, 42(1): 198-205.
[13] 路莹, 杜新强, 迟宝明, 杨悦锁, 李胜涛, 王子佳. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. J4, 2011, 41(2): 448-454.
[14] 胡继华,张延军,于子望,吴刚,杨潇瀛,倪福全. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. J4, 2008, 38(6): 992-0998.
[15] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644-0648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!