吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 830-836.doi: 10.13278/j.cnki.jjuese.20180274

• 地球探测与信息技术 • 上一篇    下一篇

基于Hartley变换的归一化总梯度法

张雅晨1,2, 刘财1,2, 陈光宇3   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 国土资源部应用地球物理重点实验室, 长春 130026;
    3. 中石化东北油气分公司科技信息部, 长春 130062
  • 收稿日期:2018-10-29 出版日期:2019-06-03 发布日期:2019-06-03
  • 通讯作者: 陈光宇(1982-),男,助理研究员,长期从事地球物理资料处理解释工作,E-mail:4432121@qq.com E-mail:4432121@qq.com
  • 作者简介:张雅晨(1986-),女,工程师,博士研究生,主要从事勘探地球物理数据处理研究,E-mail:zhangyachen@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41430322)

Normalized Total Gradient Method Based on Hartley Transform

Zhang Yachen1,2, Liu Cai1,2, Chen Guangyu3   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Key Laboratory of Applied Geophysics, Changchun 130026, China;
    3. Information and Technology Department, Northeast Oil and Gas Branch Sinopec, Changchun 130062, China
  • Received:2018-10-29 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322)

摘要: 归一化总梯度法对下半空间的重力总梯度模进行归一化计算,从而利用极值来获得地质体的分布,但现有计算方法存在计算精度较低的问题,并且计算结果不太稳定。本文采用Hartley变换,并引入新的余弦滤波因子,实现重力归一化总梯度,来压制高频干扰;此外,针对计算过程中下延深度越大干扰越严重的弊端,将余弦滤波因子的幂次设计为随深度变化的函数,从而获得更加稳定的计算结果。模型试验和在玲珑金矿区采空区的实际数据结果表明,所提出的重力归一化总梯度法具有计算速度快、精度高、稳定性强等优点。

关键词: 归一化总梯度, Hartley变换, 余弦滤波因子, 幂次

Abstract: The normalized total gradient method is a normalized calculation of the gravity total gradient mode in the lower half space, and its extreme value is used to obtain the distribution of geological bodies. The existing calculation methods have the disadvantages of low calculation accuracy and unstable results. In this study, the Hartley transform is used to realize the normalized total gradient of gravity, and a new cosine filter factor is introduced to suppress high frequency interference. In addition, the power of the cosine filter factor is designed to overcome the serious interference of deeper calculation depth,which is a function of the depth,and leads to more stable calculation results. The model test and actual data in Linglong Goldfield show that the proposed gravity normalized total gradient method has the advantages of fast calculation, high precision and strong stability, and has a good practical application value.

Key words: normalized total gradient, Hartley transform, cosine filter factor, power

中图分类号: 

  • P631.1
[1] Березкин B M.Применение гравиразведки для поисков место рождений не фти и газа[M]. Москва:Недра, 1973.
[2] B·M·别列兹金. 物探数据的总梯度解释法[M].陆克,刘文锦,焦恩富译.北京:地质出版社,1994. Березкин B M. Interpretation Method of Normalized Full Gradient to Geophysical Data[M]. Translated by Lu Ke, Liu Wenjin, Jiao Enfu. Beijing:Geological Publishing House, 1994.
[3] 孟平,秦瞳,吴云海.关于归一化总梯度异常多解性问题的研究[J].石油物探,2003,42(2):252-255. Meng Ping, Qin Tong, Wu Yunhai. Study of Nonuniqueness of the Solution to Normalized Total Gradient Method[J]. Geophysical Prospecting for Petroleum, 2003, 42(2):252-255.
[4] 曾华霖,李小孟,姚长利,等.改进的重力归一化总梯度法及其在胜利油区油气藏探测中的应用效果[J].石油地球物理勘探,1999,26(6):1-6. Zeng Hualin, Li Xiaomeng, Yao Changli, et al. The Modified Normalized Full Gradient of Gravity Anomalies and Its Application to Shengli Oil-Field, East China[J]. Petroleum Exploration and Development, 1999, 26(6):1-6.
[5] 张凤旭,孟令顺,张凤琴,等.波数域重力归一化总梯度法中的圆滑滤波因子[J].物探与化探,2005,29(3):248-252. Zhang Fengxu, Meng Lingshun, Zhang Fengqin,et al. A Study of Smoothing Filter Operator for Narmalized Full Gradient of Gravity Anomaly in Wave Number Domain[J]. Geophysical and Geochemical Exploration, 2005, 29(3):248-252.
[6] 肖鹏飞,李明,徐世浙,等.重力归一化总梯度的稳定解法[J].石油地球物理勘探,2006,41(5):596-598. Xiao Pengfei, Li Ming, Xu Shizhe, et al. Stable Solution of Normalized Total Gravity Gradient[J]. Oil Geophysical Prospecting, 2006, 41(5):596-598.
[7] Aghajani H, Moradzadth A, Aydin A, et al. Using Normalized Full Gradient Method to Interpret Gravity Anomalies on Synthetic and Field Data[J]. Conference Proceeding, 2009, 14(1):725-734.
[8] Al-Garni Mansour A, Sundararajan N. Hartley Spectral Analysis of Self-Potential Anomalies Caused by a 2-D Horizontal Circular Cylinder[J]. Arabian Journal of Geosciences, 2012, 5(6):1341-1346.
[9] 武立华,刘志海,孟霆,等.基于Hartley变换的地磁场延拓技术[J].物理实验,2018,38(7):23-25. Wu Lihua, Liu Zhihai, Meng Ting, et al. Geomagnetic Field Extension Technology Based on Hartley Transform[J]. Physical Experiment, 2018, 38(7):23-25.
[10] 罗孝宽,郭绍雍.应用地球物理教程:重力、磁法[M].北京:地质出版社,1991:139-154. Luo Xiaokuan, Guo Shaoyong. Applied Geophysics Course:Gravity and Magnetism[M]. Beijing:Geological Publising House, 1991:139-154.
[11] 孟令顺,杜晓娟.勘探重力学与地磁学[M].北京:地质出版社,2008:216-220. Meng Lingshun, Du Xiaojuan. Explorational Gravitation and Magnetism[M]. Beijing:Geological Publising House, 2008:216-220.
[12] 马国庆.汶川大地震区构造特征与均衡效应研究[D].长春:吉林大学,2010. Ma Guoqing. Research of Wenchuan Earthquake Zones Structural Feature and Equilibrium Effect[D]. Changchun:Jilin University, 2010.
[13] 肖一鸣.重力归一化总梯度法[J].石油地球物理勘探,1981,16(3):47-56. Xiao Yiming. Normalized Ttotal Gradient Method of Gravity[J]. Oil Geophysical Prospecting, 1981, 16(3):47-56.
[14] Hartley R V L. A More Symmetrical Fourier Analysis Applied to Transmission Problems[J]. Proceedings of the IRE, 1942, 30:144-150.
[15] 肖一鸣,张林详.重力归一化总梯度法在寻找油气中的应用[J].石油地球物理勘探,1984,19(3):247-254. Xiao Yiming, Zhang Linxiang. The Application of Total Gradient of Gravity in Funding Oil-Gas[J]. Oil Geophysical Prospetcting, 1984, 19(3):247-254.
[16] 甘利灯.Hartley变换及其性质[J].石油地球物理勘探,1992,27(5):605-616. Gan Lideng. Hartley Transform and Its Properties[J]. Oil Geophysical Prospecting, 1992, 27(5):605-616.
[17] 王宝仁,王芳.归一化总梯度方法的计算新技术[J].物探化探计算技术,1991,13(2):141. Wang Baoren, Wang Fang. A New Computing Technique of Normalized Total Gradient[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(2):141.
[18] 毛小平,吴蓉元,曲赞.频率域位场下延拓的振荡机制及消除方法[J].石油地球物理勘探,1998,33(3):230-237. Mao Xiaoping, Wu Rongyuan, Qu Zan. Oscillation Mechanism of Potential Field Downward Continuation in Frequency Domain and Its Elimination[J]. Oil Geophysical Prospecting, 1998, 33(3):230-237.
[19] 王家林,王一新,万民浩,等.用重力归一化总梯度法确定密度界面[J].石油地球物理勘探,1987,22(6):684-692. Wang Jialin, Wang Yixin, Wan Minhao, et al. The Determination of Density Interface Using the Normalized Total Gravity Gradient Method[J]. Oil Geophysical Prospecting, 1987, 22(6):684-692.
[20] 马国庆,孟庆发,黄大年.基于重力异常的松辽盆地构造特征识别[J].吉林大学学报(地球科学版),2018,48(2):507-516. Ma Guoqing, Meng Qingfa, Huang Danian.Structure Identification by Grabity Anomaly in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):507-516.
[1] 谭晓迪, 黄大年, 李丽丽, 马国庆, 张代磊. 小波结合幂次变换方法在边界识别中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(2): 420-432.
[2] 马国庆,黄大年,杜晓娟,李丽丽. Hartley变换在位场(重、磁)异常导数计算中的应用[J]. 吉林大学学报(地球科学版), 2014, 44(1): 328-335.
[3] 张凤琴,张凤旭,刘财,徐东海,林泽付. 利用DCT法计算重力归一化总梯度[J]. J4, 2007, 37(4): 804-0808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!