吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1137-1144.doi: 10.13278/j.cnki.jjuese.20180036

• 地质工程与环境工程 • 上一篇    下一篇

基于核酸适配体功能化石墨纳米颗粒荧光探针的17β-雌二醇快速检测方法

朴云仙1, 祁小丽1, 王湘1, 康博泉1, 史玉玺1, 胡慧1, 杨悦锁1,2   

  1. 1. 地下水资源与环境教育部重点实验室(吉林大学)/吉林大学新能源与环境学院, 长春 130021;
    2. 区域污染环境生态修复教育部重点实验室(沈阳大学), 沈阳 110044
  • 收稿日期:2018-03-02 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:朴云仙(1979-),女,副教授,博士,主要从事纳米生物催化环境修复、环境监测和生物传感器方面的研究,E-mail:yxpiao@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51809111,41472237)

Rapid Detection of 17β-Estradiol Based on Fluorescent Probe of Functionalized Graphite Nanoparticle with Aptamers

Piao Yunxian1, Qi Xiaoli1, Wang Xiang1, Kang Boquan1, Shi Yuxi1, Hu hui1, Yang Yuesuo1,2   

  1. 1. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education/College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. Key Laboratory of Eco-Restoration of Regional Contaminated Environment(Shenyang University), Ministry of Education, Shenyang 110044, China
  • Received:2018-03-02 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (51809111, 41472237)

摘要: 为构建一种能够简单、快速、特异性检测复杂环境水体中雌激素污染的方法,利用石墨纳米颗粒作为荧光淬灭剂、核酸适配体作为识别元素、1-芘丁酸N-羟基琥珀酰亚胺酯作为异型双功能交联剂,构建了一种新型纳米荧光探针;并探究了构建荧光探针时核酸适配体初始投加量和荧光探针投加量对雌二醇检测的影响及最佳实验条件下检测雌二醇的效果和特异性。实验结果表明:核酸适配体能成功修饰在石墨纳米颗粒表面形成的稳定荧光探针;构建荧光探针时核酸适配体的最佳初始投加量为1.0 μmol/L;检测雌二醇时,荧光探针的最佳投加量为4 μg/mL;最佳实验条件下,相对荧光强度与雌二醇的质量浓度在50~800 ng/mL范围内成正比,最低检测限为34.5 ng/mL,且该荧光探针能实现对雌二醇的简单、快速、特异性检测。

关键词: 石墨纳米颗粒, 核酸适配体, 17β-雌二醇, 探针, 快速检测

Abstract: In order to establish a simple, rapid and specific method for detecting 17β-estradiol in complex environmental water, we prepared a novel fluorescence probe by using graphite nanoparticles(GN) as excellent quencher, aptamers as recognition elements,and 1-pyrenebutyric acid N-hydroxysuccinimide ester as heterobifunctional crosslinking reagent. We studied the effects of initial concentration of aptamer on the construction of aptamer probe, the change of aptamer probe's concentration on fluorescence signals, and the optimal conditions for 17β-estradiol detection. The results showed that the aptamers were successfully anchored on the surface of GN, and the fluorescence aptamer probe was well synthesized. The optimum initial concentration of aptamer for the preparation of fluorescence probe was 1.0 μmol/L; the optimum concentration of the fluorescent probe for analysis was 4 μg/mL. Under the optimal condition, the relative fluorescence intensity was proportional to the concentration of 17β-estradiol ranging from 50 to 800 ng/mL, and the limit of detection was 34.5 ng/mL. This method is simple, quick and specific for the detection of 17β-estradiol.

Key words: graphite nanoparticle, aptamer, 17β-estradiol, probe, rapid detection

中图分类号: 

  • X502
[1] Kajta M, Wójtowicz A K. Impact of Endocrine-Disrupting Chemicals on Neural Development and the Onset of Neurological Disorders[J]. Pharmacological Reports, 2013, 65(6):1632-1639.
[2] Maume D, Deceuninck Y, Pouponneau K, et al. Assessment of Estradiol and Its Metabolites in Meat[J]. Apmis, 2001, 109(1):32-38.
[3] 杨悦锁,张戈,宋晓明,等. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4):1176-1190. Yang Yuesuo, Zhang Ge, Song Xiaoming, et al. Transport and Fate of Estrogens in Soil and Groundwater:A Critical Review[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1176-1190.
[4] Fan L F, Zhao G H, Shi H J, et al. A Simple and Label-Free Aptasensor Based on Nickel Hexacyanoferrate Nanoparticles as Signal Probe for Highly Sensitive Detection of 17β-Estradiol[J]. Biosensors and Bioelectronics, 2015, 68:303-309.
[5] Stanczyk F Z, Archer D F, Bhavnani B R. Ethinyl Estradiol and 17β-Estradiol in Combined Oral Contraceptives:Pharmacokinetics, Pharmacodynamics and Risk Assessment[J]. Contraception, 2013, 87(6):706-727.
[6] Qin L Q, Wang P Y, Kaneko T, et al. Estrogen:One of the Risk Factors in Milk for Prostate Cancer[J]. Medical Hypotheses, 2004, 62(1):133-142.
[7] Fan Z L, Hu J L, An W, et al. Detection and Occurrence of Chlorinated Byproducts of Bisphenol A, Nonylphenol, and Estrogens in Drinking Water of China:Comparison to the Parent Compounds[J]. Environmental Science Technology, 2013, 47(19):10841-10850.
[8] Mohammed A, 杨悦锁,杜新强,等. 内分泌干扰物的环境危害:雌激素及其硫酸盐在土壤中的吸附规律[J]. 吉林大学学报(地球科学版), 2013, 43(2):573-581. Mohammed A, Yang Yuesuo, Du Xinqiang, et al. Environmental Risk of EDC:Estrone and Its Sulphate Conjugate's Sorption from Mediator Solution in Soils of Nasarawa State of Nigeria[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):573-581.
[9] Yoon Y, Westerhof P, Snyder S A, et al. HPLC-Fluorescence Detection and Adsorption of Bisphenol A, 17β-Estradiol, and 17α-Ethynyl Estradiol on Powdered Activated Carbon[J]. Water Research, 2003, 37(14):3530-3537.
[10] Shi Y, Peng D D, Shi C H, et al. Selective Determination of Trace 17β-Estradiol in Dairy and Meat Samples by Molecularly Imprinted Solid-Phase Extraction and HPLC[J]. Food Chemistry, 2011, 126(4):1916-1925.
[11] Wang Q L, Zhang A Z, Pan X, et al. Simultaneous Determination of Sex Hormones in Egg Products by ZnCl2 Depositing Lipid, Solid-Phase Extraction and Ultra Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry[J]. Analytica Chimica Acta, 2010, 678(1):108-116.
[12] Xu C L, Chu X G, Peng C F, et al. Development of a Faster Determination of 10 Anabolic Steroids Residues in Animal Muscle Tissues by Liquid Chromatography Tandem Mass Spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(2):616-621.
[13] Choi M H, Kim K R, Chung B C. Determination of Estrone and 17β-Estradiol in Human Hair by Gas Chromatography-Mass Spectrometry[J]. Analyst, 2000, 125(4):711-714.
[14] Tsakalof A K, Gkagtzis D C, Koukoulis G N, et al. Development of GC-MS/MS Method with Programmable Temperature Vaporization Large Volume Injection for Monitoring of 17β-Estradiol and 2-Methoxyestradiol in Plasma[J]. Analytica Chimica Acta, 2012, 709:73-80.
[15] Draisci R, Volpe G, Compagnone D, et al. Development of an Electrochemical ELISA for the Screening of 17β-Estradiol and Application to Bovine Serum[J]. Analyst, 2000, 125(8):1419-1423.
[16] Xin T B, Wang X, Jin H, et al. Development of Magnetic Particle-Based Chemiluminescence Enzyme Immunoassay for the Detection of 17β-Estradiol in Environmental Water[J]. Applied Biochemistry and Biotechnology, 2009, 158(3):582-594.
[17] Gao Z X, Liu N, Cao Q L, et al. Immunochip for the Detection of Five Kinds of Chemicals:Atrazine, Nonylphenol, 17-Beta Estradiol, Paraverine and Chloramphenicol[J]. Biosensors and Bioelectronics, 2009, 24(5):1445-1450.
[18] Hu L T, Cheng Q, Chen D C, et al. Liquid-Phase Exfoliated Graphene as Highly-Sensitive Sensor for Simultaneous Determination of Endocrine Disruptors:Diethylstilbestrol and Estradiol[J]. Journal of Hazardous Materials, 2015, 283:157-163.
[19] Song J C, Yang J, Hu X M. Electrochemical Determination of Estradiol Using a Poly(l-Serine) Film-Modified Electrode[J]. Journal of Applied Electrochemistry, 2008, 38(6):833-836.
[20] Janegitz B C, Santos F A, Faria R C, et al. Electrochemical Determination of Estradiol Using a Thin Film Containing Reduced Graphene Oxide and Dihexadecylphosphate[J]. Materials Science and Engineering C, 2014, 37:14-19.
[21] Ellington A D, Szostak J W. In Vitro Selection of RNA Molecules that Bind Specific Ligands[J]. Nature, 346:818-822.
[22] Song S P, Wang L H, Li J, et al. Aptamer-Based Biosensors[J]. TrAC Trends in Analytical Chemistry, 2008, 27(2):108-117.
[23] Li J J, You J, Dai Y, et al. Gadolinium Oxide Nanoparticles and Aptamer-Functionalized Silver Nanoclusters-Based Multimodal Molecular Imaging Nanoprobe for Optical/Magnetic Resonance Cancer Cell Imaging[J]. Analytical Chemistry, 2014, 86(22):11306-11311.
[24] Roushani M, Shahdostfard F. A Highly Selective and Sensitive Cocaine Aptasensor Based on Covalent Attachment of the Aptamer-Functionalized AuNPs onto Nanocomposite as the Support Platform[J]. Analytica Chimica Acta, 2015, 853(1):214-221.
[25] Liu F, Ha H D, Han D J, et al. Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis[J]. Small, 2013, 9(20):3410-3414.
[26] Piao Y X, Liu F, Seo T S. A Novel Molecular Beacon Bearing a Graphite Nanoparticle as a Nanoquencher for in Situ mRNA Detection in Cancer Cells[J]. ACS Applied Materials Interfaces, 2012, 4(12):6785-6789.
[27] Piao Y X, Liu F, Seo T S. Highly Conductive Graphite Nanoparticle Based Enzyme Biosensor for Electrochemical Glucose Detection[J]. Sensors and Actuators B Chemical, 2014, 194:454-459.
[28] Sapsford K E, Berti L, Medintz I L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J]. Angewandte Chemie International Edition, 2006, 45(28):4562-4589.
[29] Lee E H, Lim H J, Lee S D, et al.Highly Sensitive Detection of Bisphenol A by Nano Aptamer Assaywith Truncated Aptamer[J]. ACS Applied Materials Interfaces, 2017, 9(17):14889-14898.
[30] Shrivastava A, Gupta V B. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods[J]. Drug Discovery and Therapeutics, 2011, 2(1):21-25.
[31] Stafiej A, Pyrzynska K, Regan F. Determination of Anti-Inflammatory Drugs and Estrogens in Water by HPLC with UV Detection[J]. Journal of Separation Science, 2015, 30(7):985-991.
[32] Salci B, Biryol I. Voltammetric Investigation of β-Estradiol[J]. Journal of Pharmaceutical Biomedical Analysis, 2002, 28(3):753-759.
[33] 孙思明, 周焕英, 房彦军, 等. 雌二醇的免疫胶体金试纸法检测[J]. 中国公共卫生, 2007, 23(1):126-127. Sun Siming, Zhou Huanying, Fang Yanjun, et al. Detection of Estradiol by Immune Colloidal-Gold Strips Method[J]. Chinese Journal of Public Health, 2007, 23(1):126-127.
[1] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[2] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[3] 齐钒宇, 张志, 祝新友, 李永胜, 甄世民, 公凡影, 巩小栋. 湖南宝山铜铅锌多金属矿床矿物学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 754-768.
[4] 谈树成, 郭翔宇, 何小虎, 谢志鹏, 张亚辉, 李惠民, 郝爽. 云南个旧锡多金属矿床锡石矿物化学特征及其成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 736-753.
[5] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[6] 于介江, 郭佳, 崔培龙. 延边海沟金矿床石英流体包裹体激光探针40Ar/39Ar测年与成矿背景[J]. J4, 2010, 40(4): 835-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[2] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[3] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 管彦武, 金旭, 韩湘君,陈晓东,赵发兰. 基于GIS 平台的中国大地热流数据库[J]. J4, 2005, 35(04): 525 -0528 .
[6] 王羽生,马小凡,王雨亮,程海军,吕志勇. 复合生物反应器处理城市污水的试验研究[J]. J4, 2005, 35(03): 373 -0377 .
[7] 陈军强,孙景贵,朴寿成,赵俊康,翟玉峰. 金厂沟梁金矿区暗色脉岩的成因和意义:主要和微量元素地球化学证据[J]. J4, 2005, 35(06): 707 -0713 .
[8] 程朋根,王承瑞,甘卫军,肖根如. 基于多层DEM与QTPV的混合数据模型及其在地质建模中的应用[J]. J4, 2005, 35(06): 806 -0811 .
[9] 李 秉 成. 宁夏灵武水洞沟遗址全新世的古气候环境[J]. J4, 2006, 36(01): 49 -0053 .
[10] 王国栋,程日辉,于民凤,姜 雪,崔坤宁. 沉积物的矿物和地球化学特征与盆地构造、古气候背景[J]. J4, 2006, 36(02): 202 -0206 .