吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1689-1697.doi: 10.13278/j.cnki.jjuese.20180203

• 地质工程与环境工程 • 上一篇    下一篇

拉林铁路板块缝合带隧道地应力分析

欧小强1, 王奭2, 李永亮3, 刘志强1, 郑宗溪4, 吴剑1   

  1. 1. 中铁西南科学研究院有限公司, 成都 611731;
    2. 中国铁路青藏集团有限公司, 西宁 810007;
    3. 中国铁路总公司拉林铁路建设总指挥部, 拉萨 850000;
    4. 中国中铁二院工程集团有限责任公司, 成都 610031
  • 收稿日期:2018-07-27 发布日期:2019-11-30
  • 作者简介:欧小强(1992-),男,工程师,主要从事隧道与地下工程支护结构及施工力学方面的研究,E-mail:296563268@qq.com
  • 基金资助:
    中国铁路总公司科技研究开发计划项目(2017G006-B)

In-Situ Stress Analysis of Tunnel in Plate Suture Zone of Lhasa-Nyingchi Railway

Ou Xiaoqiang1, Wang Shi2, Li Yongliang3, Liu Zhiqiang1, Zheng Zongxi4, Wu Jian1   

  1. 1. China Railway Southwest Research Institute Co., Ltd., Chengdu 611731, China;
    2. China Railway Qinghai-Tibet Group Co., Ltd., Xining 810007, China;
    3. Lhasa-Nyingchi Railway Headquarter, China Railway Corporation, Lhasa 850000, China;
    4. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China
  • Received:2018-07-27 Published:2019-11-30
  • Supported by:
    Supported by Research and Development Project for Science and Technology of China Railway Corporation (2017G006-B)

摘要: 青藏高原板块缝合带为印度板块和欧亚板块两大陆块的缝合区域,带区地质条件复杂,构造运动强烈。川藏线拉林铁路几乎沿雅鲁藏布江缝合带展布,高地应力问题十分突出,但目前针对板块缝合带隧道的地应力研究相对较少。本文采用空心包体法对拉林铁路沿线隧道进行了原位地应力测量,并与成兰、兰渝和锦屏等几个典型工程的地应力进行对比分析。研究表明:拉林铁路沿线隧道埋深大,构造应力突出,总体表现为最大水平主应力 > 垂直主应力 > 最小水平主应力;平均侧压系数(1.0~1.5)分布较为集中且处于较高水平;最大主应力量值大多在20~50 MPa之间,最大主应力与埋深的梯度为0.033 7 MPa/m,方向以北北西-北北东向为主。建议采用仰拱结构减小隧道墙脚处的应力集中现象。

关键词: 板块缝合带, 地应力, 铁路隧道, 最大主应力, 空心包体法

Abstract: The Qinghai-Tibetan Plateau suture zone lies between the continental blocks of the India plate and the Eurasian plate, where the geological conditions are complex,and the tectonic movement is strong. The Lhasa-Nyingchi Line of Sichuan-Tibet Railway is almost along the Yarlung Zangbo suture, and its high ground stress causes problems frequently. At present, the study on in-situ stress of the tunnel in plate suture zone is relatively rare. The in-situ stress measurement of the tunnels along the railway was carried out by hollow inclusion stress-relief method, and the in-situ stresses with several typical projects such as Chengdu-Lanzhou Railway, Lanzhou-Chongqing Railway, and Jinping Hydropower Station were analyzed and compared with each other. The results show that the tunnels along the Lhasa-Nyingchi Railway have large buried depth, and the prominent tectonic stress shows as maximum horizontal principal stress > vertical principal stress > minimum horizontal principal stress. The average lateral pressure coefficient distribution is relatively concentrated (1.0-1.5), and at a high level. Most of the maximum principal stresses are between 20-50 MPa, the gradient between maximum principal stress and burial depth is 0.033 7 MPa/m, and the direction of maximum principal stress is NNW-NNE. It is suggested that the invert structure should be used to reduce the stress concentration at the foot of tunnel wall.

Key words: plate suture zone, in-situ stress, railway tunnel, maximum principal stress, hollow inclusion stress-relief method

中图分类号: 

  • U452.1
[1] 丁健民, 高莉青. 地壳水平应力与垂直应力随深度的变化[J]. 地震, 1981(2):46-48. Ding Jianmin, Gao Liqing. Horizontal Geostress and Vertical Geostress Varying with Depth Crustal[J]. Earthquake, 1981(2):46-48.
[2] 周洪福,聂德新.水电工程坝址区构造应力场三维数值反演[J].吉林大学学报(地球科学版),2012,42(3):785-791. Zhou Hongfu, Nie Dexin. 3D-Numerical Back Analysis of Tectonic Stress Field in Dam Site of Hydropower Project[J]. Journal of Jilin University(Earth Science Edition), 2012,42(3):785-791.
[3] Brown E T, Hoek E. Trends in Relationships Between Measured In-Situ Stresses and Depth[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1978, 15(4):211-215.
[4] 赵德安, 陈志敏, 蔡小林,等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6):1265-1271. Zhao Dean, Chen Zhimin, Cai Xiaolin, et al. Analysis of Distribution Rule of Geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1265-1271.
[5] 景锋, 盛谦, 张勇慧,等. 中国大陆浅层地壳实测地应力分布规律研究[J]. 岩石力学与工程学报, 2007, 26(10):2056-2062. Jing Feng, Sheng Qian, Zhang Yonghui, et al. Research on Distribution Rule of Shallow Crustal Geostress in China Mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10):2056-2062.
[6] 王艳华, 崔效锋, 胡幸平,等. 基于原地应力测量数据的中国大陆地壳上部应力状态研究[J]. 地球物理学报, 2012, 55(9):3016-3027. Wang Yanhua, Cui Xiaofeng, Hu Xingping, et al. Study on the Stress State in Upper Crust of China Mainland Based on In-Situ Stress Measurements[J]. Chinese Journal of Geophysics, 2012, 55(9):3016-3027.
[7] 吴珍汉, 胡道功, 叶培盛,等. 青藏高原中段古近纪早期古构造演化[J]. 地球学报, 2009, 30(6):749-760. Wu Zhenhan, Hu Daogong, Ye Peisheng, et al. Paleocene-Eocene Tectonic Evolution in Central Tibetan Plateau[J]. Acta Geoscientica Sinica, 2009, 30(6):749-760.
[8] 劳雄. 雅鲁藏布江断裂带的形成[J]. 地质力学学报, 1995(1):53-59. Lao Xiong. On the Formation of Yarlung Zangbo River Fault Zone[J]. Journal of Geomechanics, 1995(1):53-59.
[9] 刘小汉, 李广伟, 刘小兵,等. 雅鲁藏布江缝合带区域性构造-沉积特征[J]. 地质科学, 2009, 44(4):1312-1326. Liu Xiaohan, Li Guangwei, Liu Xiaobing, et al. Regional Tectono-Sedimentary Feature of the Yarlung Zangbo Suture Zone[J]. Chinese Journal of Geology, 2009, 44(4):1312-1326.
[10] 鲍杰. "拉萨-林芝地块"地壳岩体的现今应力-形变作用机制数值模拟研究[D].成都:成都理工大学, 2012. Bao Jie. Numerical Simulation Study on the Present Stess-Deformation Mechanisms of the Crustal Rock Mass of "Lhasa-Linzhi Block"[D]. Chengdu:Chengdu University of Technology, 2012
[11] 肖序常, 汤耀庆, 高延林. 再论青藏高原的板块构造[J]. 地球学报, 1986(3):18-30. Xiao Xuchang, Tang Yaoqing, Gao Yanlin. Reexposition on Plate Tectonics of the Qinghai-Tibet Plateau[J]. Acta Geoscientica Sinica, 1986(3):18-30.
[12] 肖序常,李廷栋,李光岑,等.青藏高原的构造演化[J].中国地质科学院院报,1990(1):123-125. Xiao Xuchang, Li Tingdong, Li Guangcen, et al. Tectonic Evolution of the Qinghai-Xizang(Tibet) Plateau[J]. Bulletin of the Chinese Academy of Geological Sciences,1990(1):123-125.
[13] 高峰. 空心包体原岩应力测量方法及其工程应用[J]. 山西建筑, 2010, 36(12):353-354. Gao Feng. On Measurement Methods of Hollow Enclave Original Rocks Stress and Project Application[J]. Shanxi Architecture, 2010, 36(12):353-354.
[14] 姚瑞, 杨树新, 陆远忠,等. 在地应力测量中准确求解最大、最小水平应力问题的探讨[J]. 岩土工程学报, 2012, 34(2):317-325. Yao Rui, Yang Shuxin, Lu Yuanzhong, et al. Computing Maximum and Minimum Horizontal Stresses in In-Situ Stress Measurements[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2):317-325.
[15] 张镜剑,傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报,2008,27(10):2034-2042. Zhang Jingjian, Fu Bingjun. Rockbrust and It's Criteria and Control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10):2034-2042.
[16] 包林海, 杜义, 郭啟良,等. 成兰铁路地应力测量与构造应力场分布规律研究[J]. 地质力学学报, 2017, 23(5):734-742. Bao Linhai, Du Yi, Guo Qiliang, et al. In-Situ Stress Measurement and Research on Tectonic Stress Field Distribution Law of Chengdu-Lanzhou Railway[J]. Journal of Geomechanics, 2017, 23(5):734-742.
[17] 袁传保, 宋章. 成兰铁路地应力分布特征及工程评价[J]. 建筑技术开发, 2014, 41(7):16-22. Yuan Chuanbao, Song Zhang. Distribution Characteristics and Project Appraisal of Crustal Stress for Chengdu-Lanzhou Railway[J]. Building Technique Development, 2014, 41(7):16-22.
[18] 周泉. 兰渝线西秦岭特长隧道地应力特征及危害[J]. 西南交通大学学报, 2012,47(增刊):217-221. Zhou Quan. Analysis of the Complexity of the Stress on Lanzhou-Chongqing Railway West Qinling Special Long Tunnel[J]. Journal of Southwest Jiaotong University, 2012, 47(Sup.):217-221.
[19] 宋丙林. 秦岭隧道钻孔实测应力分析与探讨[J]. 铁道工程学报, 1996, 13(4):54-59. Song Binglin. Practical Stress Measuring Results in Boreholes at Qinling Tunnel and Discussions[J]. Journal of Railway Engineering Society, 1996, 13(4):54-59.
[20] 王朋. 引汉济渭秦岭深埋特长隧洞高地应力与岩爆关系研究[D].成都:西南交通大学, 2014. Wang Peng. Study on the Relationship Between Ground Stress and Rock Burst on the Deep-Buried of Water Diverstion Project from the Han River to the Wei River[D].Chengdu:Southwest Jiaotong University, 2014.
[21] 杜卫长. 引汉济渭工程秦岭隧洞地应力测试研究[D].郑州:郑州大学, 2017. Du Weichang. Research on In-Situ Stress Measurement of Qinling Mountain Tunnel of the Han to the Wei River Project[D]. Zhengzhou:Zhengzhou University, 2007.
[22] 杜世回. 秦岭翠华山特长隧道高地应力问题研究[J]. 铁道工程学报, 2012, 29(2):55-58. Du Shihui. Study on High Stress of Cuihuashan Super Long Tunnel in Qinling Mountain Area[J]. Journal of Railway Engineering Society, 2012, 29(2):55-58.
[23] 韩金良, 吴树仁, 谭成轩,等. 东秦岭东江口花岗岩体水压致裂法与AE法地应力测量对比研究[J]. 岩石力学与工程学报, 2007, 26(1):81-86. Han Jinliang, Wu Shuren, Tan Chengxuan, et al. Studies on Geostress by Comparing Result of AE Method with that of Hydraulic Fracturing Technique in Dongjiangkou Granite in East Qinling[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1):81-86.
[24] 谭成轩, 张鹏, 郑汉淮,等. 雅砻江锦屏一级水电站坝址区实测地应力与重大工程地质问题分析[J]. 工程地质学报, 2008, 16(2):162-168. Tan Chengxuan, Zhang Peng, Zheng Hanhuai, et al. An Analysis on In-situ Crustal Stress Measurements and Major Engineering Geology Issues at the Dam Site Area of Jinping First Stage Hydropowers Station[J]. Journal of Engineering Geology, 2008, 16(2):162-168.
[25] 赵国平, 黄鑫. 断层对锦屏地区地应力特征的影响[J]. 中国水运, 2017, 17(8):315-316. Zhao Guoping, Huang Xin. The Influence of Geological Fault on the Characteristics of Crustal Stress in Jinping Area[J]. China Water Transport, 2017, 17(8):315-316.
[1] 苏生瑞,李鹏,王琦,苏卫卫,张莹. 叠瓦状逆断层的变形规律和力学机理物理模拟试验:以龙门山断裂带为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 249-258.
[2] 徐佩华,黄润秋,陈剑平,袁中凡. 高地应力区复杂结构河谷应力场特征--以锦屏I级水电站为例[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1523-1532.
[3] 周新桂, 张林炎, 黄臣军, 万晓龙. 华庆地区长63储层裂缝分布模型与裂缝有效性[J]. J4, 2012, 42(3): 689-697.
[4] 兰凯, 熊友明, 闫光庆, 刘明国, 刘匡晓. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. J4, 2011, 41(4): 1233-1238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!