吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1755-1767.doi: 10.13278/j.cnki.jjuese.20180287
杨凌云1,2, 吴国忱1,2, 李青阳1,2
Yang Lingyun1,2, Wu Guochen1,2, Li Qingyang1,2
摘要: 卷积完全匹配层(convolution perfectly matched layer,CPML)吸收边界是一种高效处理波动方程数值模拟中人工边界反射波的方法。本文基于传统的一阶系统CPML吸收边界条件推广并推导了新的二阶系统CPML边界条件(NCPML)。与常规二阶系统CPML边界条件不同,新边界条件推导的核心思想是在复数-频率域中忽略部分衰减因子空间变化特性,避免其在时间域产生复杂卷积算子,然后反变换至时间域得到基于CPML吸收条件的二阶标量波方程,并应用于二阶标量波方程数值模拟。均匀介质模型测试验证了NCPML吸收条件在内存使用上相对于常规二阶系统CPML与SPML(split PML)吸收条件更少。在对人工边界反射的吸收效果上,NCPML稍逊色于常规二阶系统CPML,但二者均相对于SPML优势明显。最后通过层状模型和Marmousi模型测试验证了NCPML的稳定性及其在效率上的优势。
中图分类号:
[1] Clayton R, Engquist B. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540. [2] Reynolds C A. Boundary Conditions for the Numercial Solution of Wave Propagation Problems[J]. Geophysics, 1978, 43(6):1099-1110. [3] 廉西猛,张睿璇. 地震波动方程的局部间断有限元方法数值模拟[J]. 地球物理学报, 2013, 56(10):3507-3513. Lian Ximeng, Zhang Ruixuan. Numerical Simulation of Seismic Wave Equation by Local Discontinuous Galerkin Method[J]. Chinese Journal of Geophysics, 2013, 56(10):3507-3513. [4] Cerjan C, Kosloff D, Kosloff R. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations[J]. Geophysics, 1985, 50(4):705-708. [5] 廉西猛,单联瑜,隋志强. 地震正演数值模拟完全匹配层吸收边界条件研究综述[J]. 地球物理学进展, 2015, 30(4):1725-1733. LianXimeng, Shan Lianyu, Sui Zhiqiang. An Overview of Research on Perfectly Matched Layers Absorbing Boundary Condition of Seismic Forward Numerical Simulation[J]. Progress in Geophysics, 2015, 30(4):1725-1733. [6] Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computation Physics, 1994, 114(2):185-200. [7] Chew W C, Weedon H W. A 3D Perfectly Matched Medium from Modified Maxwell's Equation's with Stretched Coordinates[J]. Microwave and Optical Technology Letters, 1994, 7(13):599-604. [8] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):599-604. [9] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):153-465. [10] Kuzuogulu M, Mittra R. Frequency Dependence of the Constitve Paraments of Causual Perfectly Matched Anisotropic Absorbers[J]. IEEE Microwave and Guided Wave Letters, 1996, 6(12):447-449. [11] Berenger P J. Numercial Reflection from FDTD-PMLs:A Comparison of the Split PML with the Unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3):258-265. [12] Roden A J, Gedney D S. Convolution PML(CPML):An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media[J]. Microwave and Optical Technology Letters, 2000, 27(5):334-339. [13] Dimitri K, Roland M. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation[J]. Geophysics, 2007, 72(5):M155-M167. [14] Martin R,Komatitsch D, Ezziani A. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media[J]. Geophysics, 2008, 73(4):T51-T61. [15] Martin R,Komatitsch D, Ezziani A. A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for the Isotropic or Anisotropic Seismic Wave Equation[J]. Computer Modeling in Engineering & Sciences, 2008, 37(3):274-304. [16] Martin R, Komatitsch D. An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation[J]. Geophysical Journal International, 2009, 179(1):333-344. [17] Pasalic D, McGarry R. Convolutional Perfectly Matched Layer for Isotropic and Anisotropic Acoustic Wave equations[C]//SEG Technical Program Expanded Abstracts 2010.[S.l.]:Society of Exploration Geophysicists, 2010:2925-2929. [18] Drossaert F H, Giannopoulos A. Nonsplit Complex Frequency-Shifted PML Based on Recursive Integration for FDTD Modeling of Elastic Waves[J]. Geophysics, 2007, 72(2):T9-T17. [19] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):146-153. [20] 刑丽. 地震声波数值模拟中的吸收边界条件[J]. 上海第二工业大学学报,2006,23(4):272-278. Xing Li. Absorbing Boundary Conditions for the Numerical Simulation of Acoustic Waves[J]. Journal of Shanghai Second Polytechnic University, 2006, 23(4):272-278. [21] Pinton G F, Dahl J, Rosenzweig S, et al. A Heterogeneous Nonlinear Attenuating Full-Wave Model of Ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3):474-488. [22] 李义丰,李国峰,王云. 卷积完全匹配层在两维声波有限元计算中的应用[J]. 声学学报,2010, 35(6):601-607. Li Yifeng, Li Guofeng, Wang Yun. Application of Convolution Perfectly Matched Layer in Finite Element Method Calculation for 2D Acoustic Wave[J]. Acta Acustica, 2010, 35(6):601-607. [23] 王守东. 声波方程完全匹配层吸收边界[J]. 石油地球物理勘探,2003, 38(1):31-34. Wang Shoudong. Acoustic Wave Equation Perfectly Matches Layer Absorption Boundary[J]. Oil Geophysical Prospecting, 2003, 38(1):31-34. [24] 胡光辉,王立歆,方伍宝. 全波形反演方法及应用[M]. 北京:石油工业出版社, 2014. Hu Guanghui, Wang Lixin, Fang Wubao. Full Waveform Inversion Method and Application[M]. Beijing:Petroleum Industry Press, 2014. [25] 李青阳,吴国忱,梁展源. 基于PML边界的时间高阶伪谱法弹性波场模拟[J]. 地球物理学进展,2018, 33(1):228-235. Li Qingyang, Wu Guochen, Liang Zhanyuan. Time Domain High-Order Pseudo Spectral Method Based on PML Boundary for Elastic Wavefield Simulation[J]. Progress in Geophysics, 2018, 33(1):228-235. [26] Festa G, Nielsen S. PML Absorbing Boundaries[J]. Bulletin of the Swismological Society of America, 2003, 93(2):891-903. [27] Li Yifeng, Bou M O. Convolutional Perfectly Matched Layer for Elastic Second-Order Wave Equation[J]. The Journal of the Acoustical Society of America, 2010, 127(3):1318-1327. [28] 田坤,黄建平,李振春,等. 实现复频移完全匹配层吸收边界条件的递推卷积方法[J]. 吉林大学学报(地球科学版), 2013, 43(3):1022-1032. Tian Kun, Huang Jianping, Li Zhenchun, et al. Recursive Convolution Method for Implementing Complex Frequency-Shifted PML Absorbing Boundary Condition[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):1022-1032. [29] 袁伟良,梁昌洪. 理想匹配层的综合优化[J]. 通信学报,2000, 21(3):47-51. Yuan Weiliang, Liang Changhong. General Optimization of the Perfectly Matched Layers[J]. Journal of China Institute of Communications, 2000, 21(3):47-51. [30] Katsibas T K, Antonopulos C S. A General Form of Perfectly Matched Layers for Three-Dimensional Problems of Acoustic Scattering in Lossless and Lossy Fliuid Media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(8):927-976. [31] 刘有山,刘少林,张美根,等. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,2012, 27(5):2113-2122. Liu Youshan, Liu Shaolin, Zhang Meigen, et al. An Improved Perfectly Matched Layer Absorbing Boundary Condition for Second Elastic Wave Equation[J]. Progress in Geophysics, 2012, 27(5):2113-2122. |
[1] | 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537. |
[2] | 田坤,黄建平,李振春,李娜,孔雪,李庆洋. 实现复频移完全匹配层吸收边界条件的递推卷积方法[J]. 吉林大学学报(地球科学版), 2013, 43(3): 1022-1032. |
|