吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 842-856.doi: 10.13278/j.cnki.jjuese.20180316

• 地质与资源 • 上一篇    

桂东北姑婆山岩体矿物学和年代学特征及其成岩成矿意义

蔡永丰1,2, 刘风雷1, 冯佐海1,2, 周云1, 曾长育3   

  1. 1. 桂林理工大学广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004;
    2. 桂林理工大学广西有色金属隐伏矿床勘查及材料开发协同创新中心, 广西 桂林 541004;
    3. 广西地质调查院, 南宁 530023
  • 收稿日期:2018-12-01 发布日期:2020-05-29
  • 通讯作者: 周云(1988-),女,副教授,硕士生导师,主要从事构造地球化学方面的研究,E-mail:zhouyun@glut.edu.cn E-mail:zhouyun@glut.edu.cn
  • 作者简介:蔡永丰(1986-),男,副教授,硕士生导师,主要从事构造地质学方面的研究,E-mail:caiyongfeng@glut.edu.cn
  • 基金资助:
    广西自然科学基金项目(2018GXNSFBA281069,2015GXNSFDA139029,2017GXNSFAA198209);广西高等学校科学研究项目(KY2015ZD052);广西八桂学者项目(2018,有色金属成矿理论与勘查技术)

Mineral Compositional and Chronological Characteristics of Guposhan Pluton in Guangxi and Its Petrogenetic and Metallogenic Significance

Cai Yongfeng1,2, Liu Fenglei1, Feng Zuohai1,2, Zhou Yun1, Zeng Changyu3   

  1. 1. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, Guangxi, China;
    2. Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of Technology, Guilin 541004, Guangxi, China;
    3. Guangxi Geological Survey Institute, Nanning 530023, China
  • Received:2018-12-01 Published:2020-05-29
  • Supported by:
    Supported by Guangxi Natural Science Foundation Program (2018GXNSFBA281069, 2015GXNSFDA139029, 2017GXNSFAA198209), Key Programs of Higher Education of Guangxi Autonomous Region (KY2015ZD052) and the Fifth Bagui Scholar Innovation Project of Guangxi Autonomous Region (2018,Metallogenic Theory and Exploration Technique of Nonfreus Metals)

摘要: 为揭示桂东北姑婆山一带花岗岩的成岩成矿特征,本文对姑婆山岩体进行了黑云母矿物化学成分分析和锆石U-Pb年代学研究。花岗岩中黑云母化学成分分析结果表明:黑云母具有富铁镁、贫钙钠的特征,w(TFeO)为26.78%~31.06%、w(MgO)为2.98%~6.60%,且w(TFeO)与w(MgO)呈明显的负相关性,说明其结晶过程中主要发生了Fe2+←→Mg2+的置换反应;黑云母的含铁指数为0.68~0.84,属于高铁黑云母,氧逸度为-17.0~-15.5,结晶温度为680~705℃,平均为695℃;黑云母的全铝压力计显示黑云母结晶的压力为69~179 MPa,平均为115 MPa,对应的侵位深度相当于2 621~6 755 m,平均深度为4 331 m。年代学分析结果显示,采自姑婆山岩体的两个代表性花岗岩样品形成年龄分别为(162±3)和(163±2)Ma,为燕山早期,与华南中生代大规模岩浆-成矿作用时代一致。综合上述分析,姑婆山岩体形成于较高温度、低氧逸度、较浅的环境,显示出良好的锡成矿性,具有良好的找矿前景。

关键词: 花岗岩, 黑云母, 锆石U-Pb年代学, 姑婆山岩体, 桂东北

Abstract: In order to reveal the distribution of Early Yanshanian magmatism and its petrogenetic and metallogenic significance in South China,the authors studied the mineral composition and LA-ICP-MS zircon U-Pb geochronological characteristics of Guposhan pluton, which intruded in Huashan-Guposhan belt in northeast Guangxi. The geochronological analyses show two crystallized ages of (162±3) and (163±2) Ma, which are consistent with the time of Mesozoic large scale magmatism and mineralization in South China. The result of electron microprobe analyzer (EMPA) suggests that the biotite from Guposhan pluton has high TFeO and low MgO contents with Fe/(Fe+Mg) values of 0.68-0.84, resembling those of siderophyllite. The negative correlation between TFeO and MgO shows that the replacement between Fe2+ and Mg2+ occurred during crystallization of biotite. The data of biotite thermometers show high crystallization temperature of 680-705℃ and low oxygen fugacity of -17.0--15.5. The results of Al-in-biotite barometer indicate the biotite crystallization pressure is 69-179 MPa, suggesting a crystallization depth of 2 621-6 755 m. Integrated with regional geological data, it could be inferred that the Early Yanshanian (~162 Ma) granitic magmatism is a common geological process, and a large scale of lithospheric extension and thinning might be the key mechanism to drive the Mesozoic magmatism and the corresponding mineralization in South China. Relatively high temperature, low oxygen fugacity, and shallow environment are favorable for Sn mineralization.

Key words: granite, biotite, zircon U-Pb geochronology, Guposhan pluton, northeast Guangxi

中图分类号: 

  • P588.1
[1] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution[J]. Episodes, 2006, 29(1):26-33.
[2] 谈树成, 郭翔宇, 何小虎, 等. 云南个旧锡多金属矿床锡石矿物化学特征及其成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(3):736-753. Tan Shucheng, Guo Xiangyu, He Xiaohu, et al. Mineral Chemical Characteristics and Genesis of Cassiterite in Gejiu Tin-Polymetallic Deposit, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):736-753.
[3] Zhou Y, Liang X Q, Kröner A, et al. Late Cretaceous Lithospheric Extension in SE China:Constraints from Volcanic Rocks in Hainan Island[J]. Lithos, 2015, 232:100-110.
[4] Zhou Y, Liang X Q, Wu S C, et al. Isotopic Geochemistry, Zircon U-Pb Ages and Hf Isotopes of A-Type Granites from the Xitian W-Sn Deposit, SE China:Constraints on Petrogenesis and Tectonic Significance[J]. Journal of Asian Earth Sciences, 2015, 105:122-139.
[5] Cai Y F, Feng Z H, Shao T B, et al. New Precise Zircon U-Pb and Muscovite 40Ar-39Ar Geochronology of the Late Cretaceous W-Sn Mineralization in the Shanhu Orefield, South China[J]. Ore Geology Reviews, 2017, 84:338-346.
[6] Li H, Palinkaš L A, Watanabe K, et al. Petrogenesis of Jurassic A-Type Granites Associated with Cu-Mo and W-Sn Deposits in the Central Nanling Region, South China:Relation to Mantle Upwelling and Intra-Continental Extension[J]. Ore Geology Reviews, 2018, 92:449-462.
[7] Yuan J X, Hou Q Y, Yang Z F, et al. Distribution and Mobilization of Sn in Silicate Minerals from the Mesozoic Shizhuyuan W-Dominated Polymetallic Deposit, South China[J]. Ore Geology Reviews, 2018, 101:595-608.
[8] 冯佐海. 广西姑婆山-花山花岗岩体侵位过程及构造解析[D]. 长沙:中南大学, 2003. Feng Zuohai. Emplacement Proeess and Structural Analysis of Guposhan-Huashan Granitic Pluton, Guangxi[D]. Changsha:Central South University, 2003.
[9] 朱金初, 张佩华, 谢才富, 等. 南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因[J]. 地质学报, 2006, 80(4):529-542. Zhu Jinchu, Zhang Peihua, Xie Caifu, et al. The Huashan-Guposhan A-Type Granitoid Belt in the Western Part of the Nanling Mountains:Petrology, Geochemistry and Genetic Interpretations[J]. Acta Geologica Sinica, 2006, 80(4):529-542.
[10] 朱金初, 张佩华, 谢才富, 等. 南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义[J]. 岩石学报, 2006, 22(9):2270-2278. Zhu Jinchu, Zhang Peihua, Xie Caifu, et al. Zircon U-Pb Age Framework of Huashan-Guposhan Intrusive Belt, Western Part of Nanling Range, and Its Geological Significance[J]. Acta Petrologica Sinica, 2006, 22(9):2270-2278.
[11] 朱金初, 张佩华, 谢才富, 等. 桂东北里松花岗岩中暗色包体的岩浆混合成因[J]. 地球化学, 2006, 35(5):506-516. Zhu Jinchu, Zhang Peihua, Xie Caifu, et al. Magma Mixing Origin of the Mafic Enclaves in Lisong Granite, NE Guangxi, Western Nanling Mountains[J]. Geochimica, 2006, 35(5):506-516.
[12] 赵葵东, 蒋少涌, 朱金初, 等. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义[J]. 科学通报, 2009, 54(23):3716-3725. Zhao Kuidong, Jiang Shaoyong, Zhu Jinchu, et al. HfIsotopic Composition of Zircons from the Huashan-Guposhan Intrusive Complex and Their Mafic Enclaves in Northeastern Guangxi:Implication for Petrogenesis[J]. Chinese Science Bulletin, 2009, 54(23):3716-3725.
[13] 康志强, 冯佐海, 李晓峰, 等. 桂东北水岩坝钨锡矿田白云母40Ar/39Ar年代学研究及其地质意义[J]. 矿物岩石地球化学通报, 2012, 31(6):606-611. Kang Zhiqiang, Feng Zuohai, Li Xiaofeng, et al.40Ar-39Ar Age of Muscovite in the Shuiyanba Tungsen-Tin Ore Field in Northeast Guangxi and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6):606-611.
[14] 李晓峰, 冯佐海, 肖荣, 等. 桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景[J]. 地质学报, 2012, 86(11):1714-1725. Li Xiaofeng, Feng Zuohai, Xiao Rong, et al. Spatial and Temporal Distributions and the Geological Setting of the W-Sn-Mo-Nb-Ta Deposits at the Northeast Guangxi, Southe China[J]. Acta Geologica Sinica, 2012, 86(11):1714-1725.
[15] 袁奎荣. 姑婆山里松花岗岩体原始形态的恢复及其形成机制的探讨[J]. 桂林冶金地质学院学报, 1981, 1(l):1-13. Yuan Kuirong. A Study on Restoring Original form of Guposhan-Lisong Granite Pluton and Its Forming Mechanism[J]. Journal of Guilin Metallurgical Geological College, 1981, 1(l):1-13.
[16] 张德全, 王雪英, 孙桂英. 关于广西姑婆山-里松岩体的定(侵)位年龄和冷凝历史的探讨[J]. 地质论评, 1985, 31(3):232-239. Zhang Dequan, Wang Xueying, Sun Guiying. Cooling History and Emplacement Ages of the Guposhan-Lisong Granite Masses, Guangxi[J]. Geological Review, 1985, 31(3):232-239.
[17] 欧阳成甫. 广西姑婆山岩体侵位构造及侵位机制研究[J]. 大地构造与成矿学, 2002, 26(3):331-334. Ouyang Chengfu. Emplacement Structures and Mechanism of Guposhan Granite Pluton, Guangxi Province, China[J]. Geotectonica et Metallogenia, 2002, 26(3):331-334.
[18] 顾晟彦, 华仁民, 戚华文. 广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及全岩Sr-Nd同位素研究[J]. 地质学报, 2006, 80(4):543-553. Gu Shengyan, Hua Renmin, Qi Huawen. Study on Zircon LA-ICP-MS U-Pb Dating and Sr-Nd Isotope of the Guposhan Granite in Guangxi[J]. Acta Geologica Sinica, 2006, 80(4):543-553.
[19] Shu X J, Wang X L, Sun T, et al. Crustal Formation in the Nanling Range, South China Block:Hf Isotope Evidence of Zircons from Phanerzoic Granitoids[J]. Journal of Asian Earth Sciences, 2013, 74:210-224.
[20] 陆小平, 陆孝赞, 龚名文, 等. 广西姑婆山锡矿田矿床地质特征及矿床成因[J]. 华南地质与矿产, 2005, 21(2):53-60. Lu Xiaoping, Lu Xiaozan, Geng Mingwen, et al. Geological Characteristics and Genesis of the Guposhan Tin Orefield in Guangxi[J]. Geology and Mineral Resources of South China, 2005, 21(2):53-60.
[21] 王新宇, 周健华, 周国发, 等. 南岭成矿带中段广西花山地区成矿模式探讨[J]. 华南地质与矿产, 2011, 27(2):159-173. Wang Xinyu, Zhou Jianhua, Zhou Guofa, et al. Metallogenic Model of Ore Deposits in Huashan Area of Guangxi Province, Mid-Nanling Metallogenic Belt[J]. Geology and Mineral Resources of South China, 2011, 27(2):159-173.
[22] Wang R C, Xie L, Chen J, et al. Tin-Carrier Minerals in Metaluminous Granites of the Western Nanling Range (Southern China):Constraints on Processes of Tin Mineralization in Oxidized Granites[J]. Journal of Asian Earth Sciences, 2013, 74:361-372.
[23] 张诗启, 蔡明海, 彭振安, 等. 广西姑婆山地区钨锡矿床地质特征及幔源物质参与成矿显示[J]. 西北地质, 2010, 43(1):86-97. Zhang Shiqi, Cai Minghai, Peng Zhen'an, et al. Geological Characteristics of Tungsten-Tin Deposits and the Indication of Mantle Material Participating the Tungsten-Tin Mineralization in Guposhan Region, Guangxi[J]. Northwestern Geology, 2010, 43(1):86-97.
[24] Du-Bray E A. Compositions of Micas in Peraluminous Granitoids of the Eastern Arabian Shield:Implications for Petrogenesis and Tectonic Settings of Highly Evolved, Rare-Metal Enriched Granites[J]. Contributions to Mineralogy and Petrology, 1994, 116(4):381-397.
[25] Patio-Dounce A E. Titanium Substitution in Biotite:An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability[J]. Chemical Geology, 1993, 108(1/2/3/4):133-162.
[26] 程顺波, 付建明, 徐德明, 等. 桂东北大宁岩体锆石SHRIMP年代学和地球化学研究[J]. 中国地质, 2009, 36(6):1278-1288. Cheng Shunbo, Fu Jianming, Xu Deming, et al. Zircon SHRIMP U-Pb Dating and Geochemical Characteristics of Daning Batholith in Northeast Guangxi[J]. Geology in China, 2009, 36(6):1278-1288.
[27] 谢晓华, 陈卫锋, 赵葵东, 等. 桂东北豆乍山花岗岩年代学与地球化学特征[J]. 岩石学报, 2008, 24(6):1302-1312. Xie Xiaohua, Chen Weifeng, Zhao Kuidong, et al. Geochemical Characteristics and Geochronology of the Douzhashan Granite, Northeastern Guangxi Province, China[J]. Acta Petrologica Sinica, 2008, 24(6):1302-1312.
[28] 蔡永丰, 蔡运花, 冯佐海, 等. 桂东北姑婆山花岗岩地球化学特征及成岩成矿意义[J]. 现代矿业, 2016(2):113-115. Cai Yongfeng, Cai Yunhua, Feng Zuohai, et al. Geochemical Characteristics of Guposhan Granite, Northeastern Guangxi Province, China and Its Mineralization Significance[J]. Modern Mining, 2016(2):113-115.
[29] 林文蔚, 彭丽君. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J]. 长春地质学院学报, 1994, 24(2):155-162. Lin Wenwei, Peng Lijun. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data[J]. Journal of Changchun University of Earth Sciences, 1994, 24(2):155-162.
[30] Henry D J, Guidotti C V, Thomson J A. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms[J]. American Mineralogist, 2005, 90(2/3):316-328.
[31] Uchida E, Endo S, Makino M. Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits[J]. Resource Geology, 2007, 57(1):47-56.
[32] Kumar S, Pathak M. Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya:Evidence of Bimodal Granitogeny and Tectonic Affinity[J]. Journal of the Geological Society of India, 2010, 75(5):715-730.
[33] Foster M D. Interpretation of the Composition of Trioctahedral Micas[J]. US Government Printing Office, 1960, 354B:1-49.
[34] Rieder M, Cavazzini G, D'Yakonov Y S, et al. Nomenclature of the Micas[J]. Canadian Mineralogist, 1998, 36:905-912.
[35] 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988, 4(3):63-73. Zhou Zuoxia. Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning[J]. Acta Petrologica Sinica, 1988, 4(3):63-73.
[36] Claesson S, Vertin V, Bayanova T, et al. U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia:A Record of Geological Evolution from the Archaen to the Palaeozoic[J]. Lithos, 2000, 51(1/2):95-108.
[37] 杨学明, 张培善. Rb-Sr和Pb同位素在限定花岗质岩石源岩性质中的地学意义:以姑婆山花岗杂岩体为例[J]. 科学通报, 1991, 36(6):490-493. Yang Xueming, Zhang Peishan. Geological Significance of Rb-Sr and Pb Isotopes for Constraint of Source Rocks of Granitoids:Exemplified by Guposhan Granite Complex[J]. Chinese Science Bulletin, 1991, 36(6):490-493.
[38] 殷保安. 广西壮族自治区岩石地层[M]. 武汉:中国地质大学出版社, 1997:265-270. Yin Baoan.Lithostratigraphy of Guangxi Autonomous Region[M]. Wuhan:China University of Geosciences Press, 1997:265-270.
[39] 广西地质矿产勘查开发局. 广西壮族自治区数字地质图说明书(1:50万)[R]. 桂林:广西区域地质调查研究院, 1999. Guangxi Bureau of Geology & Mineral Prospecting & Exploitation. Instructions of Digital Geological Maps of Guangxi (1:500000)[R]. Guilin:Guangxi Institute of Regional Geological Survey, 1999.
[40] Abdel-Rahman A F M. Nature of Biotite from Alkaline, Calc-Alkaline, and Peraluminous Magmas[J]. Journal of Petrology, 1994, 35(2):525-541.
[41] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京:科学出版社, 1984:77-78. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry[M]. Beijing:Science Press, 1984:77-78.
[42] Wones D R, Eugster H P. Stability of Biotite:Experiment, Theory, and Application[J]. American Mineralogist, 1965, 50(9):1228-1272.
[43] Wones D R. Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks[J]. American Mineralogist, 1989, 74:744-749.
[44] De-Albuquerque C A R. Geochemistry of Biotites from Granitic Rocks, Northern Portugal[J]. Geochimica et Cosmochimica Acta, 1973, 37(7):1779-1802.
[45] Chappell B W, White A J. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8:173-174.
[46] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.
[47] Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7):641-644.
[48] Loiselle M C, Wones D R. Characteristics and Origin of Anorogenic Granites[J]. Geological Society of America Bulletin (Abstracts with Programs), 1979, 11:468.
[49] 蒋少涌, 赵葵东, 姜耀辉, 等. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J]. 高校地质学报, 2008, 14(4):496-509. Jiang Shaoyong, Zhao Kuidong, Jiang Yaohui, et al. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces Along the Shi-Hang Belt, South China[J]. Geological Journal of China Universities, 2008, 14(4):496-509.
[50] Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 2005, 46(6):1121-1154.
[51] Li Z X, Li X H. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model[J]. Geology, 2007, 35(2):179-182.
[52] Sun F, Xu X, Zou H, et al. Petrogenesis and Magmatic Evolution of~130 Ma A-Type Granites in Southeast China[J]. Journal of Asian Earth Sciences, 2015, 98:209-224.
[53] Wu F Y, Lin J Q, Wilde S A, et al. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2):103-119.
[54] Lehmann B. Metallogeny of Tin[M]. Berlin:Springer-Verlag, 1990:1-211.
[55] 陈骏, 王汝城, 周建平, 等. 锡的地球化学[M]. 南京:南京大学出版社, 2000:116-145. Chen Jun, Wang Rucheng, Zhou Jianping, et al. Geochemistry of Tin[M]. Nanjing:Nanjing University Press, 2000:116-145.
[56] Stemprok M. Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas[J]. Mineralium Deposita, 1990, 25(3):205-212.
[57] Linnen R L, Pichavant M, Holtz F. The Combined Effects of fO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Haplogranitic Melts[J]. Geochimica et Cosmochimica Acta, 1996, 60(24):4965-4976.
[58] 唐灿辉, 张寿庭, 张云辉, 等. 河南栾川南泥湖和上房沟花岗岩体黑云母成分特征及其成岩成矿意义[J]. 矿物岩石地球化学通报, 2015, 34(3):539-545. Tang Canhui, Zhang Shouting, Zhang Yunhui, et al. Compositional Characteristics of Biotites from Nannihu and Shangfanggou Granites in the Luanchuan Ore Belt, Henan Province, and Its Significance for Petrogenesis and Metallogeny[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):539-545.
[1] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[2] 周传芳, 杨华本, 李向文, 刘玉, 刘涛, 陈卓, 蔡艳龙, 刘宁波, 王博超, 王大可. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 97-111.
[3] 杨小鹏, 王长兵, 李文庆. 大兴安岭北段索图罕地区碱长花岗岩成因及形成构造背景[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1338-1349.
[4] 王春光, 董晓杰, 徐仲元, 任云伟, 王文龙, 陈煜嵩. 内蒙古红山子地区新太古代变质侵入岩年代学及地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 709-726.
[5] 鲁倩, 孙景贵, 安久海, 韩吉龙, 褚小磊. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
[6] 张超, 吴新伟, 张渝金, 郭威, 权京玉. 龙江盆地中生代火山岩锆石U-Pb年代学及其对基底性质的制约[J]. 吉林大学学报(地球科学版), 2019, 49(2): 460-476.
[7] 尹志刚, 李海娜, 张海, 郝科, 庞学昌, 宫兆民, 李敏, 张圣听. 大兴安岭加格达奇东北部花岗岩类形成时代、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1741-1755.
[8] 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482.
[9] 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783.
[10] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[11] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[12] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[13] 高红梅, 兰永伟, 周莉, 孟丽岩. 温度作用下缺陷花岗岩热损伤:以甘肃北山缺陷花岗岩为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1795-1802.
[14] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
[15] 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!