吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 442-454.doi: 10.13278/j.cnki.jjuese.20200058

• 地质与资源 • 上一篇    

诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征

李杰, 黄宏业, 刘子杰, 张涛, 王前林, 蒋红安, 邹明亮   

  1. 核工业二三○研究所, 长沙 430007
  • 收稿日期:2020-03-09 发布日期:2021-04-06
  • 通讯作者: 邹明亮(1983-),男,高级工程师,硕士,主要从事铀成矿作用方面的研究,E-mail:zoumingliang2001@163.com E-mail:zoumingliang2001@163.com
  • 作者简介:李杰(1991-),男,工程师,硕士,主要从事铀矿地质勘查与科研工作,E-mail:lijie568521@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0602600);中国核工业集团有限公司项目(3210402)

40Ar-39Ar Geochronological Characteristics of Diabase in Lujing Area of Middle Zhuguangshan

Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Jiang Hong'an, Zou Mingliang   

  1. Research Institute No. 230, CNNC, Changsha 430007, China
  • Received:2020-03-09 Published:2021-04-06
  • Supported by:
    Supported by the National Key R&D Program of China(2017YFC0602600) and the China National Nuclear Corporation Project (3210402)

摘要: 诸广—贵东地区作为华南热液型铀矿最为重要的花岗岩型铀矿大型矿集区,区内发育了大量与铀矿化作用密切相关的基性岩脉。为了厘定区内基性岩年代学数据,更好地约束铀成矿时限,以诸广中段鹿井地区辉绿岩脉为研究对象,开展了40Ar-39Ar年代学研究。结果表明:辉绿岩全岩40Ar-39Ar同位素年龄为(171.7±1.6)、(169.1±3.8)Ma,反映鹿井地区在中侏罗世(约170 Ma)发生了一次岩石圈伸展裂解作用。诸广—贵东地区至少存在200、170、140、105和90 Ma 5期基性岩浆活动,195、165、125、90、75和55 Ma 6期铀成矿事件,成矿热液往往紧随每次区域性玄武岩事件之后(5~20 Ma),铀成矿与以辉绿岩墙为代表的区域玄武岩事件有紧密的时间、空间和成因联系。辉绿岩脉与成矿构造上的关联性以及来源于地幔的深部岩浆浅部表现形式的成因特点,决定了其可以为铀成矿提供一定的挥发分(矿化剂)和后期铀沉淀富集场所,提高成矿热液对铀的携带能力,进而促进铀的成矿作用。

关键词: 辉绿岩, 40Ar-39Ar年龄, 铀成矿作用, 花岗岩型铀矿, 鹿井地区

Abstract: The Zhuguang-Guidong area is the most important granite-related hydrothermal uranium ore deposit cluster in South China. The Mesozoic mafic dykes are widely distributed in this area, and they are closely associated with the uranium mineralization. In order to confirm the geochronological data of the mafic dykes and the uranium metallogenic time,a whole-rock 40Ar-39Ar analysis was carried out. The 40Ar-39Ar isotopic ages of the whole diabase are (171.7±1.6) Ma and (169.1±3.8) Ma, indicating that the Lujing area underwent a lithosphere extension in the Middle Jurassic (170 Ma). The results show that at least five major episodes of mafic dykes occurred at 200, 170, 140, 105, and 90 Ma, and at least six major events of uranium mineralization occurred at 195, 165, 125, 90, 75, and 55 Ma, which is consistent with the previously published geochronological data. The ore-forming hydrothermal fluid followed right after each regional basalt event (5-20 Ma),so the uranium mineralization was closely related to the regional basalt events represented by the diabase wall in time, space, and genesis. The correlation between the diabase veins and metallogenic structures and the genesis characteristics of the shallow forms of the mantle hypomagma indicate that it may provide a certain amount of volatile matter (mineralizer) for uranium mineralization and the enrichment place for ore deposits;The ore-forming hydrothermal fluid may improve the carrying capacity of uranium and promote uranium mineralization.

Key words: diabase, 40Ar-39Ar age, uranium mineralization, granite-related uranium, Lujing area

中图分类号: 

  • P588.12
[1] Walker G P L, Eyre P R. Dike Complexes in American Samoa[J]. Journal of Volcanology and Geothermal Research, 1995, 69(3/4):241-254.
[2] 李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学, 1997, 26(2):14-31. Li Xianhua, Hu Ruizhong, Rao Bing. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China[J]. Geochimica, 1997, 26(2):14-31.
[3] 王学成,章邦桐,张祖还. 暗色岩脉与铀成矿关系研究[J]. 矿床地质, 1991, 10(4):359-370. Wang Xuecheng, Zhang Bangtong, Zhang Zuhuan. A Study of the Relationship Between the Dark Dyke and the Uranium Mineralization[J]. Mineral Deposits, 1991, 10(4):359-370.
[4] 夏宗强,李建红. 贵东-诸广山地区白垩纪中基性岩脉特征及其与铀成矿关系[J]. 矿物学报, 2009,29(增刊1):641-643. Xia Zongqiang, Li Jianhong. The Characteristics of Cretaceous Mafic Dikes and Its Relationship with Uranium Mineralization in Guidong-Zhuguangshan Area[J]. Acta Mineralogica Sinica, 2009,29(Sup.1):641-643.
[5] 邓平,舒良树,谭正中. 诸广-贵东大型铀矿聚集区富铀矿成矿地质条件[J]. 地质论评, 2003, 49(5):486-494. Deng Ping, Shu Liangshu, Tan Zhengzhong. The Geological Setting for the Formation of Rich Uranium Ores in Zhuguang-Guidong Large-Scale Uranium Metallogenetic Area[J]. Geological Review, 2003,49(5):486-494.
[6] 朱捌. 地幔流体与铀成矿作用研究:以诸广山南部铀矿田为例[D]. 成都:成都理工大学, 2010. Zhu Ba. The Study of Mantle Liquid and Uranium Metallogenesis:Take Uranium Ore Field of South Zhuguang Mountain as an Example[D]. Chengdu:Chengdu University of Technology, 2010.
[7] 曹豪杰,黄国龙,许丽丽,等. 诸广花岗岩体南部油洞断裂带辉绿岩脉的40Ar-39Ar年龄及其地球化学特征[J]. 地质学报, 2013, 87(7):957-966. Cao Haojie, Huang Guolong, Xu Lili, et al. The 40Ar-39Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton[J]. Acta Geologica Sinica, 2013, 87(7):957-966.
[8] 骆金诚,齐有强,王连训,等. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识[J]. 岩石学报, 2019, 35(9):2660-2678. Luo Jincheng, Qi Youqiang, Wang Lianxun, et al.Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China:A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization[J]. Acta Petrologica Sinica, 2019, 35(9):2660-2678.
[9] Wang L X, Ma C Q, Lai Z X, et al. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China):Implications for Tectonic Evolution and Uranium Metallogenesis[J]. Lithos, 2015, 239:71-85.
[10] Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb Geochronology and Geochemistry of Granites in the Zhuguangshan Complex, South China:Implications for Uranium Mineralization[J]. Lithos, 2018, 308/309:19-33.
[11] 田晓龙. 诸广山-贵东地区基性岩脉的地球化学特征及其与铀矿的关系[D]. 北京:中国地质大学(北京), 2016. Tian Xiaolong. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region[D]. Beijing:China University of Geoscience(Beijing), 2016.
[12] 夏宗强,李建红. 桃山-诸广-贵东地区基性岩脉岩石化学特征及其地质意义[J]. 世界核地质科学, 2008, 25(4):203-210. Xia Zongqiang, Li Jianhong. Petrochemical Characteristics of Basic Dikes and Its Geological Significance in Taoshan-Zhuguang-Guidong Area[J]. World Nuclear Geoscience, 2008, 25(4):203-210.
[13] 陈学明. 粤北地区辉绿岩的特征及其地质意义[J]. 现代地质, 1996, 10(3):91-98. Chen Xueming. Characteristics of Diabases in North Guangdong and Their Geological Significance[J]. Geoscience, 1996, 10(3):91-98.
[14] 朱捌,凌洪飞,沈渭洲,等. 粤北下庄矿田晚白垩世辉绿玢岩的地球化学特征及其构造意义[J]. 地质论评, 2008, 54(1):26-36. Zhu Ba, Ling Hongfei, Shen Weizhou, et al. Geochemical Characteristics of Late Cretaceous Diabase Prophyrite Dikes in the Xiazhuang Uranium Orefield, Northern Guangdong Province and Its Tectonic Significance[J]. Geological Review, 2008, 54(1):26-36.
[15] 李献华. 诸广山岩体内中基性岩脉的成因初探:Sr、Nd、O同位素证据[J]. 科学通报, 1990, 35(16):1247-1249. Li Xianhua. The Origin of the Mafic Dykes in the Zhuguangshan Pluton:Evidence from Sr-Nd-O Isotopes[J]. Chinese Science Bulletin, 1990, 35(16):1247-1249.
[16] 陆建军,吴烈勤,凌洪飞,等. 粤北下庄铀矿田黄陂-张光营辉绿岩脉的成因:元素地球化学和Nd-Sr-Pb-O同位素证据[J]. 岩石学报, 2006, 22(2):397-406. Lu Jianjun, Wu Lieqin, Ling Hongfei, et al. The Origin of the Huangpi-Zhangguangying Diabase Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province:Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes[J]. Acta Petrologica Sinica,2006, 22(2):397-406.
[17] Ling Hongfei, Shen Weizhou, Deng Ping, et al. Geochemical Characteristics and Genesis of the Luxi-Xianrenzhang Diabase Dikes in Xiazhuang Uranium Orefield, Northern Guangdong Province[J]. Acta Geologica Sinica, 2005, 79(4):497-506.
[18] 詹礼贵,祝民强,祁家明,等. 诸广岩体南部辉绿岩脉特征及其与铀成矿关系[J]. 科学技术与工程, 2015, 15(19):1-9. Zhan Ligui, Zhu Minqiang, Qi Jiaming, et al. Diabase Dikes in Southern Zhuguang Granitic Batholith:Its Charactristics and Relationship with Uranium Mineralization[J]. Science Technology and Engineering, 2015, 15(19):1-9.
[19] 李献华. 万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动[J]. 中国科学:B辑, 1990, 20(7):747-755. Li Xianhua. Magmatism Age and Crustal Movement of the Granite Matrix of Wanyangshan-Zhuguangshan[J]. Science in China:Series B, 1990, 20(7):747-755.
[20] 蒋红安,邹明亮,欧阳平宁,等. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系[J]. 地质通报, 2020, 39(5):728-734. Jiang Hong'an,Zou Mingliang,OuYang Pingning, et al. 40Ar-39Ar Age of the Late Stage Veins in Central Zhuguangshan Pluton of South China and Its Relationship with Uranium Metallogenesis[J]. Geological Bulletin of China, 2020, 39(5):728-734.
[21] 赵振华,包志伟,张伯友. 湘南中生代玄武岩类地球化学特征[J]. 中国科学:D辑, 1998, 28(增刊2):7-14. Zhao Zhenhua, Bao Zhiwei, Zhang Boyou. Geochemical Characteristics of Mesozoic Basalt in Southern Hunan[J]. Science in China:Series D, 1998, 28(Sup.2):7-14.
[22] Bonnetti C, Liu X D, Mercadier J, et al. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China:Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation[J]. Ore Geology Reviews, 2018, 92:588-612.
[23] 胡宝群,白丽红,潘天有,等. 竹山下矿床中的早期高温铀成矿作用[J]. 华东地质学院学报, 2003, 26(4):311-320. Hu Baoqun, Bai Lihong, Pan Tianyou, et al. The Early High-Temperature Uranium Mineralization in Zhushanxia Deposit[J]. Journal of East China Geological Institute, 2003, 26(4):311-320.
[24] 胡瑞忠,毕献武,苏文超,等. 华南白垩-第三纪地壳拉张与铀成矿的关系[J]. 地学前缘, 2004, 11(1):153-160. Hu Ruizhong, Bi Xianwu, Su Wenchao, et al. The Relationship Between Uranium Metallogenesis and Crustal Extension During the Cretaceous-Tertiary in South China[J]. Earth Science Frontiers, 2004, 11(1):153-160.
[25] Hu R Z, Bi X W. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension During the Cretaceous to Tertiary[J]. Economic Geology, 2008, 103(3):583-598.
[26] Luo J C, Hu R Z, Fayek M, et al. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China[J]. Ore Geology Reviews, 2015, 65:968-978.
[27] 胡瑞忠,毕献武,彭建堂,等. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 2007, 26(2):139-152. Hu Ruizhong, Bi Xianwu, Peng Jiantang, et al. Some Problems Concerning Relationship Between Mesozoci-Cenozoic Lithospheric Extension and Uranium Metallogenesis in South China[J]. Mineral Deposits, 2007, 26(2):139-152.
[28] Zhang X T, Pan J Y, Xia F, et al. Genesis and Metallogenic Process of the Lujing Uranium Deposit, Southwest Jiangxi Province, China:Constraints of Micropetrography and S-C-O Isotopes[J]. Resource Geology, 2018, 68(3):303-325.
[29] 李军杰,刘汉彬,张佳,等. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J]. 岩矿测试, 2016, 35(3):229-235. Li Junjie, Liu Hanbin, Zhang Jia, et al. Accurate Measurement of Argon Isotope Composition of Air by Argus Multi-Collector Noble Gas Mass Spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3):229-235.
[30] McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. 2nd Ed. New York:Oxford University Press, 1999.
[31] Bai X J, Qiu H N, Liu W G, et al. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus[J]. Journal of Earth Science, 2018, 29(2):408-415.
[32] Koppers A A P. ArArCALC-Software for 40Ar/39Ar Age Calculations[J]. Computers & Geosciences, 2002, 28(5):605-619.
[33] Zeitler P K, Gerald J D F. Saddle-Shaped 40Ar/39Ar Age Spectra from Young, Microstructurally Complex Potassium Feldspars[J]. Geochimica et Cosmochimica Acta, 1986, 50(6):1185-1199.
[34] 李正华,戴橦谟,邱华宁. 40Ar(40Ar*+40ArE)、39Ar释气特征与过剩氩的甄别及年代学意义[J]. 地质科学, 1995, 30(1):40-46. Li Zhenghua, Dai Tongmo, Qiu Huaning. The Release of 40Ar(40Ar*+40ArE) and 39Ar in 40Ar/39Ar Samples and Its Chronological Significance[J]. Scientia Geologica Sinica, 1995, 30(1):40-46.
[35] 陈福川,王庆飞,李龚健,等. 滇西哀牢山镇沅煌斑岩40Ar-39Ar年代学和地球化学特征[J].岩石学报, 2015, 31(11):3203-3216. Chen Fuchuan, Wang Qingfei, Li Gongjian, et al.40Ar-39Ar Chronological and Geochemical Characteristics of Zhenyuan Lamprophyres in Ailaoshan Belt, Western Yunnan[J]. Acta Petrological Sinica, 2015, 31(11):3203-3216.
[36] 王非,师文贝,朱日祥. 40Ar/39Ar年代学中几个重要问题的讨论[J]. 岩石学报, 2014, 30(2):326-340. Wang Fei, Shi Wenbei, Zhu Rixiang. Problems of Modern 40Ar/39Ar Geochronology:Reviews[J]. Acta Petrological Sinica, 2014, 30(2):326-340.
[37] Li X H. Cretaceous Magmatism and Lithospheric Extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3):293-305.
[38] Chen P R, Hua R M, Zhang B T, et al. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region:Petrological Constraints and Geodynamic Settings[J]. Science in China:Series D, 2002, 45(8):755-768.
[39] Zhang D, Zhao K D, Chen W, et al. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China:Geochronology, Petrogenesis and Relationship with Uranium Mineralization[J]. Lithos, 2018, 308/309:118-133.
[40] 饶泽煌. 江西相山铀矿田基性岩特征及意义研究[D].南昌:东华理工大学, 2012. Rao Zehuang. Mafic Geochemical Characteristics and Its Research Significance of Xiangshan Uranium Ore-Field, Jiangxi Province[D]. Nanchang:East China Institute of Technology, 2012.
[41] 孔华,许明珠,张强,等. 湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位素组成及其地质意义[J].吉林大学学报(地球科学版), 2016, 46(3):627-638. Kong Hua, Xu Mingzhu, Zhang Qiang, et al. LA-ICP-MS Zircon U-Pb Dating and Hf Isotope Feature of Gabbro Xenolith and Its Geological Significance in Huziyan Basalt of Daoxian County, Southern Hunan Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3):627-638.
[42] 陈培荣. 华南东部中生代岩浆作用的动力学背景及其与铀成矿关系[J].铀矿地质, 2004, 20(5):266-270. Chen Peirong. GeodynamicSetting of Mesozoic Magmatism and Its Relationship to Uranium Metallogenesis in Southeastern China[J]. Uranium Geology, 2004, 20(5):266-270.
[43] Ye H M, Mao J R, Zhao X L, et al. Revisiting Early-Middle Jurassic Igneous Activity in the Nanling Mountains, South China:Geochemistry and Implications for Regional Geodynamics[J]. Journal of Asian Earth Sciences, 2013, 72:108-117.
[44] Hoek J D, Seitz H M. Continental Mafic Dyke Swarms as Tectonic Indicators:An Example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 1995, 75(3/4):121-139.
[45] 陈文,万渝生,李华芹,等. 同位素地质年龄测定技术及应用[J]. 地质学报, 2011, 85(11):1917-1947. Chen Wen, Wan Yusheng, Li Huaqin, et al. Isotope Geochronology:Technique and Application[J]. Acta Geologica Sinica, 2011, 85(11):1917-1947.
[46] Lee J Y, Marti K, Severinghaus J P, et al. A Redetermination of the Isotopic Abundances of Atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17):4507-4512.
[47] 杜泽忠,程志中,姚晓峰,等.胶东谢家沟金矿床蚀变钾长石40Ar-39Ar年龄及地质意义[J].吉林大学学报(地球科学版),2020,50(5):1570-1581. Du Zezhong, Cheng Zhizhong, Yao Xiaofeng, et al. 40Ar-39Ar Age of Altered Potash Feldspar of Xiejiagou Gold Deposit in Jiaodong and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5):1570-1581.
[48] 董树文,张岳桥,赵越,等. 中国大陆中-新生代构造演化与动力学分析[M]. 北京:科学出版社, 2016. Dong Shuwen, Zhang Yueqiao, Zhao Yue, et al. Tectonic Evolution and Dynamic Analysis of the Meso-Cenozoic in Mainland China[M]. Beijing:Science Press, 2016.
[49] 张金带,简晓飞,李友良,等. "十一五"铀矿勘查和地质科技进展及"十二五"总体思路[J]. 铀矿地质, 2011, 27(1):1-7. Zhang Jindai, Jian Xiaofei, Li Youliang, et al. Progress in 11th Five Year and the Geneal Idea for 12th Five Year of Uranium Exploration and Geological Science and Technology[J]. Uranium Geology, 2011, 27(1):1-7.
[50] 杜乐天. 中国热液铀矿基本成矿规律和一般热液成矿学[M]. 北京:原子能出版社, 2001. Du Letian. Basic Metallogenic Law and General Hydrothermal Metallogenesis of Hydrothermal Uranium Deposits in China[M]. Beijing:Atomic Energy Publishing House, 2001.
[51] 杜乐天,王文广. 华南花岗岩型铀矿找矿新目标:绢英岩化铀矿类型[J]. 铀矿地质, 2009, 25(2):85-90. Du Letian, Wang Wenguang. New Exploration Target for Granite-Type Uranium Deposits in South China:A Case Study on Uranium Mineralization of Sericitic Alteration[J]. Uranium Geology, 2009, 25(2):85-90.
[52] 吴俊奇,闵茂中,翟建平,等. 华南诸广山复式岩体中段花岗岩的碱交代蚀变[J]. 岩石学报, 1998, 14(1):91-99. Wu Junqi,Min Maozhong, Zhai Jianping, et al. Alkali Metasomatic Alteration of the Granite in Middle Zhuguang Mountain, South China[J]. Acta Petrological Sinica, 1998, 14(1):91-99.
[53] Min M Z, Luo X Z, Du G S, et al. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China[J]. Ore Geology Reviews, 1999, 14(2):105-127.
[54] 张爱,刘成东,余志灵,等. 诸广南部铀矿区碱交代岩特征及同位素年代学研究[J]. 东华理工大学学报(自然科学版), 2009, 32(3):209-212. Zhang Ai, Liu Chengdong, Yu Zhiling, et al. The Features and Geochronology of Alkali Metasomatic Rock in Southern Zhuguang Uranium Mineralization Area[J]. Journal of East China Institute of Technology, 2009, 32(3):209-212.
[55] 杜乐天. 中国热液铀矿成矿理论体系[J]. 铀矿地质, 2011, 27(2):65-68. Du Letian. On the Theory of Hydrothermal Uranium Metalization in China[J]. Uranium Geology, 2011, 27(2):65-68.
[56] 陈跃辉,陈祖伊,蔡煜琦,等. 华东南中新生代伸展构造时空演化与铀矿化时空分布[J]. 铀矿地质, 1997, 13(3):129-138. Chen Yuehui, Chen Zuyi, Cai Yuqi, et al. Space-time Evolution of Meso-Cenozoic Extensional Tectonics and Distributions of Uranium Mineralizations in Southeastern China[J]. Uranium Geology, 1997, 13(3):129-138.
[57] 吴烈勤,谭正中,刘汝洲,等. 粤北下庄矿田铀矿成矿时代探讨[J]. 铀矿地质, 2003, 19(1):28-33. Wu Lieqin, Tan Zhengzhong, Liu Ruzhou, et al. Discussion on Uranium Ore-Formation Age in Xiazhuang Ore-Field, Northern Guangdong[J]. Uranium Geology, 2003, 19(1):28-33.
[58] 刘翔,包云河,杨尚海,等. 中南铀矿地质志[R]. 北京:中国核工业地质局, 2005. Liu Xiang, Bao Yunhe, Yang Shanghai, et al. Uranium Geology of Central South China[R]. Beijing:China Nuclear Geology, 2005.
[59] 张国全,胡瑞忠,商朋强,等. 302铀矿床方解石C-O同位素组成与成矿动力学背景研究[J]. 矿物学报, 2008, 28(4):413-420. Zhang Guoquan, Hu Ruizhong, Shang Pengqiang, et al. Study on the C-O Isotopic Composition of Calcites and Metallogenic Dynamics Background in the No.302 Uranium Deposit[J]. Acta Mineralogica Sinica, 2008, 28(4):413-420.
[60] 王正其,李子颖,吴烈勤,等. 幔源铀成矿作用的地球化学证据:以下庄小水"交点型"铀矿床为例[J]. 铀矿地质, 2010, 26(1):24-34. Wang Zhengqi, Li Ziying, Wu Lieqin, et al. Geochemical Evidences for Mantle-Derived Uranium Metallogenesis:A Case Study of Xiaoshui Intersection-Type Uranium Deposit in Xiazhuang Area[J]. Uranium Geology, 2010, 26(1):24-34.
[61] 黄国龙,尹征平,凌洪飞,等. 粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究[J]. 矿床地质, 2010, 29(2):352-360. Huang Guolong, Yin Zhengping, Ling Hongfei, et al. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from No.302 Uranium Deposit in Northern Guangdong[J]. Mineral Deposits, 2010, 29(2):352-360.
[62] 邹东风,李方林,张爽,等. 粤北下庄335矿床成矿时代的厘定:来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J]. 矿床地质, 2011, 30(5):912-922. Zou Dongfeng, Li Fanglin, Zhang Shuang, et al. Timing of No.335 Ore Deposit in Xiazhuang Uranium Orefield, Northern Guangdong Province:Evidence from LA-ICP-MS U-Pb Dating of Pitchblende[J]. Mineral Deposits, 2011, 30(5):912-922.
[63] 张龙,陈振宇,李胜荣,等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9):2657-2670. Zhang Long, Chen Zhenyu, Li Shengrong, et al. Characteristics of Uranium Minerals in Wall-Rock Alteration Zones of the Mianhuakeng (No.302) Uranium Deposit, Northern Guangdong, South China[J]. Acta Petrological Sinica, 2018, 34(9):2657-2670.
[64] Zhong F J, Pan J Y, Qi J M, et al. New In-Situ LA-ICP-MS U-Pb Ages of Uraninite from the Mianhuakeng Uranium Deposit, Northern Guangdong Province, China:Constraint on the Metallogenic Mechanism[J]. Acta Geological Sinica, 2018, 92(2):852-854.
[65] Zhang C, Cai Y Q, Dong Q, et al. Genesis of the South Zhuguang Uranium Ore Field, South China:Pb Isotopic Compositions and Mineralization Ages[J]. Resource Geology, 2019, 69(1):22-42.
[66] 钟福军,严杰,夏菲,等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9):2727-2744. Zhong Fujun, Yan Jie, Xia Fei, et al. In-Situ Isotope Geochronology of Uraninite for Changjiang Granite-Type Uranium Ore Field in Northern Guangdong, China:Implications for Uranium Mineralization[J]. Acta Petrological Sinica, 2019, 35(9):2727-2744.
[67] 杜乐天. 花岗岩型铀矿文集[M]. 北京:原子能出版社, 1982. Du Letian. Granite Type Uranium Deposit Corpus[M]. Beijing:Atomic Energy Publishing House, 1982.
[68] 胡瑞忠,李朝阳,倪师军,等. 华南花岗岩型铀矿床成矿热液中ΣCO2来源研究[J]. 中国科学:B辑, 1993, 23(2):189-196. Hu Ruizhong,Li Chaoyang, Ni Shijun, et al. Study on the Source of ΣCO2 in Ore-Forming Hydrothermal Fluid for Granite-Type Uranium Deposits in South China[J]. Science in China:Series B, 1993, 23(2):189-196.
[69] 聂斌,张万良. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系[J]. 矿产与地质, 2018, 32(3):390-396. Nie Bin, Zhang Wanliang.Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province[J]. Mineral Resources and Geology, 2018, 32(3):390-396.
[70] 冯志军,赖中信,莫济海,等. 下庄矿田"交点"型铀矿床成矿机理研究及勘查思路探讨[J]. 矿床地质, 2016, 35(5):1047-1061. Feng Zhijun, Lai Zhongxin, Mo Jihai, et al. A Study of Metallogenic Mechanism of "Intersection" Type Uranium Deposit and Exploration Thinking of Xiazhuang Orefield[J]. Mineral Deposits, 2016, 35(5):1047-1061.
[1] 杜泽忠, 程志中, 姚晓峰, 于晓飞, 孙海瑞, 鲍兴隆, 李少华. 胶东谢家沟金矿床蚀变钾长石40Ar-39Ar年龄及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1570-1581.
[2] 程龙, 丁清峰, 邓元良, 宋凯, 张强. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1628-1648.
[3] 董福湘, 曹家鑫, 于红玉, 闫攀攀. 秦皇岛柳江地区辉绿岩脉特征及其成因[J]. 吉林大学学报(地球科学版), 2015, 45(3): 820-831.
[4] 郑常青, 李娟, 金巍, 周建波, 施璐, 崔芳华, 韩晓萌. 松辽盆地西缘断裂带中花岗质糜棱岩的锆石SHRIMP和云母氩-氩年龄及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 349-363.
[5] 李双文,吴永平,刘化清,周立宏,肖敦清,姚军,倪长宽. 歧口凹陷新生界火成岩油藏特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1071-1084.
[6] 裴福萍, 叶轶凡,王枫,曹花花,路思明, 杨德彬. 吉林通化地区中元古代辉绿岩墙的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(1): 110-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!