吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 526-532.doi: 10.13278/j.cnki.jjuese.20190212

• 地质工程与环境工程 • 上一篇    

COMSOL平台在城市地下多种资源相互影响分析中的应用

周丹坤1, 李晓昭1,2, 常晓军3   

  1. 1. 南京大学地球科学与工程学院, 南京 210023;
    2. 中国地质科学院地球深部探测中心, 北京 100037;
    3. 中国地质调查局南京地质调查中心, 南京 210016
  • 收稿日期:2019-10-02 发布日期:2021-04-06
  • 作者简介:周丹坤(1990-),男,博士研究生,主要从事城市地质调查与地下空间资源开发方面的研究,E-mail:zhoudankun@smail.nju.edu.cn
  • 基金资助:
    中国地质调查局项目(DD20160245)

Application of COMSOL Platform in Analysis of Interaction of Urban Underground Multiple Resources

Zhou Dankun1, Li Xiaozhao1,2, Chang Xiaojun3   

  1. 1. School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China;
    2. Sino Probe Center, Chinese Academy of Geological Sciences, Beijing 100037, China;
    3. Nanjing Center of China Geological Survey, Nanjing 210016, China
  • Received:2019-10-02 Published:2021-04-06
  • Supported by:
    Supported by the Project of China Geological Survey(DD20160245)

摘要: 针对系统动力学方法在地下资源相互影响问题分析中存在的不足,引入了多孔介质多场耦合理论,以地下水源热泵形式浅层地热能资源开发的假想模型为例,运用COMSOL平台建立了温度场-渗流场-应力场耦合的数值模型,对比了地下水源热泵运行前后和对调抽/回灌井前后区域地下渗流场、地温场和应力场的变化情况。结果表明:地下水源热泵运行前后抽水井和回灌井周边的渗流场发生了显著改变,10 a之后抽水井的水温由初始的约21℃下降至约17℃,并呈现出继续下降的趋势,区域地面沉降量达2 m左右;对调抽/回灌井后,抽水井温度的下降幅度由之前的4.0℃变为不到0.5℃。COMSOL平台在地下多种资源相互影响分析及其优化利用方面展示出良好的应用潜力。

关键词: 多种资源, 相互影响, 多场耦合, COMSOL

Abstract: Aiming at the shortcomings of the system dynamics method in the analysis of the interaction of underground resources, the multi-field coupling theory of porous media was introduced. Taking the hypothetical model of shallow geothermal energy resource development in the form of GSHP as an example, a coupled numerical model of temperature field, seepage field and stress field was established by using the COMSOL platform, and the changes of regional multiple physical fields before and after the GSHP operation and the adjustment of pumping and recharging wells were compared. The results show that the seepage field around the pumping well and recharging well changed significantly after the operation of groundwater source heat pump. After 10 a, the water temperature of the pumping well dropped from the initial 21℃ to about 17℃, and the regional land subsidence was about 2 m. After the pumping and recharging wells were reversed, the temperature of the pumping well decreased from 4.0℃ to less than 0.5℃. All these indicate that the COMSOL platform has good application potential in the interactive analysis and optimal utilization of various underground resources.

Key words: multiple resources, mutual influence, multi-field coupling, COMSOL

中图分类号: 

  • TP391
[1] Roberts D V. Sustainable Development and the Use of Underground Space[J]. Tunnelling and Underground Space Technology, 1996, 11(4):383-390.
[2] Broere W. Urban Underground Space:Solving the Problems of Today's Cities[J]. Tunnelling and Underground Space Technology, 2016, 55(6):245-248.
[3] 童林旭. 地下空间概论:一[J]. 地下空间与工程学报, 2004, 24(1):133-136. Tong Linxu. An Introduction to Underground Space:Ⅰ[J]. Chinese Journal of Underground Space and Engineering, 2004, 24(1):133-136.
[4] 钱七虎. 城市可持续发展与地下空间开发利用[J]. 地下空间与工程学报, 1998, 18(2):69-74. Qian Qihu. Sustainable Development of the Cities and the Development and Utilization Underground Space[J]. Chinese Journal of Underground Space and Engineering, 1998, 18(2):69-74.
[5] Blunier P, Tacher L, Parriaux A. Systemic Approach of Urban Underground Resources Exploitation[C]//11th ACUUS Conference. Athens:Associated Research Centers for the Urban Underground Space, 2007:43-48.
[6] Parriaux A, Tacher L, Joliquin P. The Hidden Side of Cities Towards Three-Dimensional Land Planning[J]. Energy & Buildings, 2004, 36(4):335-341.
[7] 张忠兴. 城市地下资源开发的相互影响及其系统动力学研究[D]. 南京:南京大学, 2012. Zhang Zhongxing. Study on Interaction Between Multiple Urban Underground Resources and Its System Dynamical Method[D]. Nanjing:Nanjing University, 2012.
[8] 周丹坤, 李晓昭, 马岩, 等. 城市地下多种地质资源开发的相互影响模式研究[J]. 高校地质学报, 2020, 26(2):231-240. Zhou Dankun, Li Xiaozhao, Ma Yan, et al. Study on the Impact Patterns of Multiple Geological Resources During Urban Underground Development[J]. Geological Journal of China Universities, 2020, 26(2):231-240.
[9] 王军辉, 韩煊, 周宏磊, 等. 地下水环境与运营期的城市地下空间相互作用[J]. 土木建筑与环境工程, 2011(增刊2):50-54. Wang Junhui, Han Xuan, Zhou Honglei, et al. Interaction Between Groundwater Environment and Urban Underground Space During Its Operation[J]. Journal of Civil, Architectural & Environmental Engineering, 2011(Sup.2):50-54.
[10] 骆祖江, 宁迪, 杜菁菁, 等. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2):514-525. Luo Zujiang, Ning Di, Du Jingjing, et al. Influence of Building Load and Groundwater Exploitation on Land Subsidence in Shengze, Wujiang[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):514-525.
[11] 陆观立. 地下水渗流对土壤源热泵地埋管换热特性影响研究[D]. 成都:西南交通大学, 2009. Lu Guanli. Study of Effect of Groundwater Seepage on Characteristics of Heat Transfer in Ground Source Heat Pump System[D]. Chengdu:Southwest Jiaotong University, 2009.
[12] 胡继华, 张延军, 于子望, 等. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. 吉林大学学报(地球科学版), 2008,38(6):992-998. Hu Jihua,Zhang Yanjun,Yu Ziwang, et al. Groundwater Flow Transfixion of Groundwater Source Heat Pump System and Its Influence on Temperature Field[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(6):992-998.
[13] 许劼, 王国权, 李晓昭. 城市地下空间开发对地下水环境影响的初步研究[J]. 工程地质学报, 1999, 7(1):15-19. Xu Jie, Wang Guoquan, Li Xiaozhao. A Preliminary Research on Potential Effect of Underground Engineering on Groundwater Environment[J]. Journal of Engineering Geology, 1999, 7(1):15-19.
[14] Blunier P. Méthodologie de Gestion Durable des Ressources du Sous-Sol Urbain[D]. Lausanne:École Polytechnique Fédérale de Lausanne, 2009.
[15] 王其藩. 系统动力学[M]. 上海:上海财经大学出版社, 2015. Wang Qifan. Sytem Dynamics[M]. Shanghai:Shanghai University of Finance and Economics Press, 2015.
[16] 井兰如, 冯夏庭. 地质介质热-力学-化学耦合反应的数值模拟:国内外研究成果评述[J]. 岩石力学与工程学报, 2003, 22(10):1704-1715. Jing Lanru, Feng Xiating. Numerical Modeling for Coupled Thermos-Hydro-Mechanical and Chemical Processes of Geological Media:International and Chinese Experiences[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10):1704-1715.
[17] 程学雷,崔春义,孙世娟. COMSOL Multiphysics在岩土工程中应用[M]. 北京:中国建筑工业出版社,2014. Cheng Xuelei, Cui Chunyi, Sun Shijuan. Application of COMSOL Multiphysics in Geotechnical Engineering[M]. Beijing:China Architecture & Building Press, 2014.
[18] Omer A M. Ground-Source Heat Pumps Systems and Applications[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2):344-371.
[19] 张吉,陈克非. 南通某地下水地源热泵工程1:1地下蓄能循环现场试验研究[J]. 区域供热, 2016,8(2):92-97,108. Zhang Ji, Chen Kefei. Field Test of 1:1 Underground Energy Storage Cycle for a Ground Source Heat Pump Project in Nantong[J]. District Heating, 2016, 8(2):92-97,108.
[20] David P B, Gareth J F, Corinna A, et al. Groundwater Heat Pump Feasibility in Shallow Urban Aquifers:Experience from Cardiff, UK[J]. Science of the Total Environment, 2019, 69(7):1-11.
[21] Biot M A. Mechanics of Deformation and Acoustic Propagation in Porous Media[J]. Journal of Applied Physics, 2004, 33(4):1482-1498.
[22] Incropera F P, Lavine A S, Bergman T L, et al. Fundamentals of Heat and Mass Transfer[M]. New Jersey:Wiley Press, 2007.
[1] 于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 199-206.
[2] 许天福, 金光荣, 岳高凡, 雷宏武, 王福刚. 地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J]. J4, 2012, 42(5): 1410-1425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!