吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1276-1283.doi: 10.13278/j.cnki.jjuese.20200129

• 地球探测与信息技术 • 上一篇    下一篇

中国月尘探测进展及后续展望

李存惠1, 张小平2, 张熇3, 王鹢1, 谢良海2, 严奇2, 马继楠3, 张海燕1, 庄建宏1, 赵呈选1   

  1. 1. 兰州空间技术物理研究所真空技术与物理重点实验室, 兰州 730000;
    2. 澳门科技大学月球与行星科学国家重点实验室, 澳门 999078;
    3. 北京空间飞行器总体设计部, 北京 100094
  • 收稿日期:2020-05-23 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 张小平(1982-),男,副教授,博士,主要从事月球、行星尘埃及辐射环境研究,E-mail:xpzhangnju@gmail.com E-mail:xpzhangnju@gmail.com
  • 作者简介:李存惠(1984-),男,博士研究生,高级工程师,主要从事空间尘埃和粒子探测载荷研制与探测数据分析应用研究,E-mail:licunhui@spacechina.com
  • 基金资助:
    国家自然科学基金项目(11761161001,41704167);澳门科学技术发展基金项目(020/2014/A1,008/2017/AFJ,0042/2018/A2)

Lunar Dust Detection Progress and Future Prospects

Li Cunhui1, Zhang Xiaoping2, Zhang He3, Wang Yi1, Xie Lianghai2, Yan Qi2, Ma Jinan3, Zhang Haiyan1, Zhuang Jianhong1, Zhao Chengxuan1   

  1. 1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
    2. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China;
    3. Beijing Institute of Spacecraft System Engineering, Beijing 100049, China
  • Received:2020-05-23 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (11761161001, 41704167) and the Science and Techno-logy Development Fund (FDCT) of Macau (020/2014/A1, 008/2017/AFJ, 0042/2018/A2)

摘要: 月球尘埃研究具有重要的科学和工程价值。目前对月球尘埃运动规律、运动机理等的了解非常有限,对尘埃运动物理参数缺少系统的定量测量,严重制约了月球尘埃的科学研究。阿波罗17号宇航员观察到的月尘扬起及其物理机制迄今为止在科学上仍然是一个谜。中国的嫦娥三号月球探测任务得到了月面上的尘埃沉积数据及尘埃活动高度数据,表明尘埃活动具有显著的地域差异。在嫦娥五号采样返回任务中将研究月尘带电方面的物理特性。探月后续任务中如果能够在高纬度地区首次系统地定量测量月尘运动的物理参数,将会揭示不同经纬度区域、不同太阳光照条件、不同太阳风条件、不同地形条件下的尘埃活动规律及其关键影响因素,对高精度数值模型的建立及其参数选择提供定量限制,必将取得新的重要科学发现。

关键词: 月球尘埃, 科学问题, 探测进展, 探测方案

Abstract: Lunar dust research has important scientific and engineering values. Although it has been studied for several decades,the transportation of natural dust activity near the Moon surface and its physical mechanism remain unclear due to the lack of quantitative measurements of relevant physical parameters,which is the bottle neck of lunar dust research. So far, Apollo's lunar dust observations still remain a scientific mystery. With China's Chang'e 3 lunar exploration data,scientists have obtained the dust deposition rates and maximum levitated height on the lunar surface. Compared with the previous Apollo measurements,these results indicate that the dust activity has significant regional differences. In Chang'e 5 lunar mission,the in-situ charging properties of levitated dust will be measured. To further promote the lunar dust research,it is very important to systematically and quantitatively measure the physical parameters of the lunar dust transportation in the high-latitude region in the future lunar missions,which will be vital to reveal the physical mechanism of dust transportation under different influence factors such as different latitude and longitude regions,different solar conditions,different solar wind conditions, and different terrain conditions. These measurements will provide quantitative constraints in theoretical models and will surely lead to new and important scientific discoveries.

Key words: lunar dust, scientific topics, research progress, detection scheme

中图分类号: 

  • P184.5
[1] Szalay J R, Poppe A R, Agarwal J, et al. Dust Phenomena Relating to Airless Bodies[J]. Space Science Reviews, 2018, 214(5):98.
[2] Liu Y, Taylor L A. Characterization of Lunar Dust and a Synopsis of Available Lunar Simulants[J]. Planetary and Space Science, 2011, 59(14):1769-1783.
[3] Rennilson J J, Criswell D R. Surveyor Observations of Lunar Horizon-Glow[J]. The Moon, 1974, 10(2):121-142.
[4] Mccoy J, Criswell D R. Evidence for a High Altitude Distribution of Lunar Dust[C]//Lunar and Planetary Science Conference Proceedings. New York:Pergamon Press Inc, 1974:2991-3005.
[5] Mccoy J. Photometric Studies of Light Scattering Above the Lunar Terminator from Apollo Solar Corona Photography[C]//Lunar and Planetary Science Conference Proceedings. New York:Pergamon Press Inc, 1976:1087-1112.
[6] Glenar D A, Stubbs T J, Mccoy J E, et al. A Reanalysis of the Apollo Light Scattering Observations, and Implications for Lunar Exospheric Dust[J]. Planetary and Space Science, 2011, 59:1695-1707.
[7] Berg O E, Wolf H, Rhee J. Lunar Soil Movement Registered by the Apollo 17 Cosmic Dust Experiment[C]//Interplanetary Dust and Zodiacal Light. Berlin:Springer-Verlag, 1976:233-237.
[8] Colwell J E, Batiste S, Horányi M, et al. Lunar Surface:Dust Dynamics and Regolith Mechanics[J]. Reviews of Geophysics, 2007, 45. doi:10.1029/2005RG000184.
[9] Park J, Liu Y, Kihm K D, et al. Characterization of Lunar Dust for Toxicological Studies:I:Particle Size Distribution[J]. Journal of Aerospace Engineering, 2008, 21(4):266-271.
[10] Liu Y, Park J, Schnare D, et al. Characterization of Lunar Dust for Toxicological Studies:II:Texture and Shape Characteristics[J]. Journal of Aerospace Engineering, 2008, 21(4):272-279.
[11] Taylor L, Schmitt H, Carrier W, et al. Lunar Dust Problem:From Liability to Asset[C]//Proceedings of the 1st Space Exploration Conference:Continuing the Voyage of Discovery, Space Exploration Conferences. Orlando:American Institute of Aeronautics and Astronautics Inc, 2005. doi:10.2514/6.2005-2510.
[12] Zook H A, Mccoy J E. Large Scale Lunar Horizon Glow and a High Altitude Lunar Dust Exosphere[J]. Geophysical Research Letters, 1991, 18(11):2117-2120.
[13] O'Brien B J. Paradigm Shifts About Dust on the Moon:From Apollo 11 to Chang'E-4[J]. Planetary and Space Science, 2018, 156:47-56.
[14] Kuznetsov I A, Zakharov A V, Dolnikov G G, et al. Lunar Dust:Properties and Investigation Techniques[J]. Solar System Research, 2017, 51(7):611-622.
[15] Horányi M, Szalay J R, Kempf S, et al. A Permanent, Asymmetric Dust Cloud Around the Moon[J]. Nature, 2015, 522:324-326.
[16] Xie L, Zhang X, Zheng Y, et al. Solar Wind-Generated Current in the Lunar Dust Experiment[J]. Geophysical Research Letters, 2016, 43:3662-3669.
[17] Szalay J R, Horányi M. Lunar Meteoritic Gardening Rate Derived from in Situ LADEE/LDEX Measurements[J]. Geophysical Research Letters, 2016, 43:4893-4898.
[18] Wang X, Schwan J, Hsu H W, et al. Dust Charging and Transport on Airless Planetary Bodies[J]. Geophysical Research Letters, 2016, 43:6103-6110.
[19] Wang X, Horányi M, Robertson S. Experiments on Dust Transport in Plasma to Investigate the Origin of the Lunar Horizon Glow[J]. Journal of Geophysical Research, 2009, 114:A05103.
[20] Wang X, Horányi M, Robertson S. Investigation of Dust Transport on the Lunar Surface in a Laboratory Plasma with an Electron Beam[J]. Journal of Geophysical Research, 2010, 115:A11102.
[21] Sun Y, Liu J G, Kong Y D, et al. Effects of Lunar Soil Simulant on Systemic Oxidative Stress and Immune Response in Acute Rat Lung Injury[J]. International Journal of Pharmacology, 2018, 14:766-772.
[22] Sun Y, Liu J, Zhang X, et al. Mechanisms Involved in Inflammatory Pulmonary Fibrosis Induced by Lunar Dust Simulant in Rats[J]. Environmental Toxicology, 2019, 34:131-140.
[23] Sun Y, Zhang L, Liu J, et al. Effects of Lunar Dust Simulant on Cardiac Function and Fibrosis in Rats[J]. Toxicol Res, 2019, 8:499-508.
[24] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报, 2018, 5(4):374-381. Yuan Yong, Zhao Chen, Hu Zhenyu. Prospect of Lunar Base Construction Scheme[J]. Joumal of Deep Space Exploration, 2018, 5(4):374-381.
[25] Li D T, Wang Y, Zhang H, et al. In-Situ Measurements of Lunar Dust at the Chang'E-3 Landing Site in the Northern Mare Imbrium[J]. Jounal of Geophysical Research:Planets, 2019, 124(8):2168-2177.
[26] Zhang H Y, Wang Y, Chen L P, et al. In-Situ Lunar Dust Deposition Amount Induced by Lander Landing in Chang'E-3 Mission[J]. Science China:Technological Science, 2020, 63(3):520-527.
[27] Yan Q, Zhang X P, Xie L H, et al. Weak Dust Activity near a Geologically Young Surface Revealed by Chang'E-3 Mission[J]. Geophysical Research Letters, 2019, 46(16):9405-9413.
[28] Xiao L, Zhu P M, Fang G Y, et al. A Young Multilayered Terrane of the Northern Mare Imbrium Revealed by Chang'E-3 Mission[J]. Science, 2015, 347:1226-1229.
[29] Hurwitz D, Kring D A. Identifying the Geologic Context of Apollo 17 Impact Melt Breccias[J]. Earth and Planetary Science Letters, 2016, 436:64-70.
[30] Crozaz G, Drozd R, Hohenberg C, et al. Lunar Surface Dynamics:Some General Conclusions and New Results from Apollo 16 and 17[C]//Lunar Science Conference, 5th. Houston:Pergamon Press Inc, 1974:2475-2499.
[31] Wang Z C, Wu Y Z, Blewett D T, et al. Submicroscopic Metallic Iron in Lunar Soils Estimated from the in Situ Spectra of the Chang'E-3 Mission[J]. Geophysical Research Letters, 2017, 44(8):3485-3492.
[32] Stubbs T J, Vondrak R R, Farrell W M. A Dynamic Fountain Model for Lunar Dust[J]. Advances in Space Research, 2006, 37(1):59-66.
[33] Stubbs T J, Farrell W M, Halekas J S, et al. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation[J]. Planetary and Space Science, 2014, 90:10-27.
[34] Wang J, He X M, Cao Y. Modeling Electrostatic Levitation of Dust Particles on Lunar Surface[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2459-2466.
[35] Pines V, Zlatkowski M, Chait A. Lofted Charged Dust Distribution Above the Moon Surface[J]. Planetary and Space Science, 2011, 59:1795-1803.
[36] Collier M R, Farrell W M, Stubbs T J. The Lunar Dust Pendulum[J]. Advances in Space Research, 2013, 52:251-261.
[37] Hartzell C M, Scheeres D J. Dynamics of Levitating Dust Particles near Asteroids and the Moon[J]. Journal of Geophysical Research-Planets, 2013, 18:116-125.
[38] Kimura H, Senshu H, Wada K. Electrostatic Lofting of Dust Aggregates near the Terminator of Airless Bodies and Its Implication for the Formation of Exozodiacal Disks[J]. Planetary and Space Science, 2014,100:64-72.
[39] Hess S L G, Sarrailh P, Matéo-Veléz J C, et al. New SPIS Capabilities to Simulate Dust Electrostatic Charging, Transport, and Contamination of Lunar Probes[J]. IEEE Transactions on Plasma Science, 2015, 43(9):2799-2807.
[40] Dyadechkin S, Kallio E, Wurz P. New Fully Kinetic Model for the Study of Electric Potential, Plasma, and Dust Above Lunar Landscapes[J]. Journal of Geophysical Research-Space Physics, 2015, 120:1589-1606.
[41] Bussey D B J, Spudis P D, Robinson M S. Illumination Conditions at the Lunar South Pole[J]. Geophysical Research Letters, 1999, 26(9):1187-1190.
[42] Bussey D B J, Fristad K E, Schenk P M, et al. Planetary Science:Constant Illumination at the Lunar North Pole[J]. Nature, 2005, 434:842-842.
[43] 欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005. Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing:China Astronautic Publishing House, 2005.
[44] Lee P. Dust Levitation on Asteroids[J]. Icarus, 1996, 124(1):181-194.
[45] Lee L H. Adhesion and Cohesion Mechanisms of Lunar Dust on the Moon's Surface[J]. Journal of Adhesion Science and Technology, 1995, 9(8):1103-1124.
[46] Horányi M, Robertson S, Walch B. Electrostatic Charging Properties of Simulated Lunar Dust[J]. Geophysical Research Letters, 1995, 22(16):2079-2082.
[47] Colwell J E, Robertson S R, Horányi M, et al. Lunar Dust Levitation[J]. Aerospace Engineering, 2009, 22(1):2-9.
[48] Wang Xu, Colwell J E, Horányi M, et al, Charge of Dust on Surfaces in Plasma[J]. IEEE Transactions on Plasma Science, 2007, 35(2):271-279.
[49] Horányi M, Sternovsky Z, Lankton M, et al. The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission[J]. Space Science Reviews, 2014, 185(1/2/3/4):93-113.
[50] Grün E, Horányi M, Sternovsky Z. The Lunar Dust Environment[J]. Planetary & Space Science, 2011, 59(14):1672-1680.
[51] Popel S I, Kopnin S I, Golub' A P, et al. Dusty Plasma at the Surface of the Moon[J]. Solar System Research, 2013, 47(6):419-429.
[52] Wallace W T. Lunar Dust and Lunar Simulant Activation and Monitoring[J]. Meteoritics & Planetary Science, 2009, 44:961-970.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .