吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1306-1315.doi: 10.13278/j.cnki.jjuese.20210117

• 岩土防灾与减灾 • 上一篇    下一篇

排桩对柱面SH波散射问题研究:解析求解

巴振宁1,2,3, 刘博佳4, 付继赛1   

  1. 1. 天津大学建筑工程学院, 天津 300072;
    2. 中国地震局地震工程综合模拟与城乡抗震韧性重点实验室(天津大学), 天津 300350;
    3. 滨海土木工程结构与安全教育部重点实验室(天津大学), 天津 300350;
    4. 天津大学国际工程师学院, 天津 300072
  • 收稿日期:2021-04-12 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:巴振宁(1980-),男,教授,博士生导师,主要从事地震工程、环境振动与隔振方面的研究,E-mail:bazhenning_001@163.com
  • 基金资助:
    国家自然科学基金项目(51778413)

Study on Scattering of Cylindrical SH Waves by a Row of Piles: Analytical Solution

Ba Zhenning1,2,3, Liu Bojia4, Fu Jisai1   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
    2. Laboratory of Earthquake Engineering Simulation and Seismic Resilience (Tianjin University), China Earthquake Administration, Tianjin 300350, China;
    3. Key Laboratory of Coast Civil Structure Safety (Tianjin University), Ministry of Education, Tianjin 300350, China;
    4. Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
  • Received:2021-04-12 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (51778413)

摘要: 采用波函数展开法结合Graf加法定理,利用桩体与土体之间的位移和应力连续边界条件,给出了全空间单排桩对柱面SH波散射解析解,并采用傅里叶逆变换,求得时域结果。该方法考虑了入射波曲率的影响,在频域内分析了柱面SH波入射时排桩散射的频谱规律,给出了时域排桩柱面SH波散射位移云图,讨论了桩数与桩间距对柱面SH波入射时排桩散射的影响。研究表明:在振源距排桩较近(d/a=10)时,低频段(η=0~1.0)排桩对柱面SH波的隔离作用显著;振源距排桩较远时,各频段排桩对柱面SH波的隔离作用均较为显著。桩间距固定时,增加桩数,排桩后方首次出现的最大位移响应相应减小,排桩散射的影响范围随之增大;对柱面SH波进行阻隔时,为提高阻隔效率的同时节约成本,不仅需要考虑桩数,还应考虑波源与桩体、桩间空隙相对位置的影响;排桩分布宽度固定时,由于入射波曲率对排桩散射的影响,减小桩间距,排桩后方首次出现的最大位移响应有可能会出现放大的情况,故应采用合理的桩间距对柱面SH波进行阻隔。

关键词: 柱面SH波, 波函数展开法, 排桩散射, 时域

Abstract: The wave function expansion method as well as the Graf addition theorem, combined with the continuous boundary conditions of displacements and stresses between the piles and the soil, are addressed to obtain the analytical full-space solutions of the cylindrical SH waves scattering by a single row of piles, and the time-domain solutions are gained by the inverse Fourier transform. In this method, the influence of the curvature of the incident waves is taken into account. In the frequency domain, the spectrum laws of the scattering wave fields due to piles under cylindrical SH waves incidence are analyzed. In the time domain, the contour maps of displacements near the piles due to the scattered cylindrical SH waves are given, and the influence of the number of piles and the distance between the piles on the scattering by the piles are discussed. The results show that:1) The isolation effects of the piles on the low-frequency band (η=0-1.0) of the cylindrical SH waves are significant when the vibration source is close to the pile (d/a=10), while those on each frequency band are significant when the vibration source is far from the piles; 2) When the pile spacing is fixed, the first-appearing maximum displacement behind the row of piles decreases with increasing the number of piles, as well as the range of influence of the scattering of the row of piles increases accordingly; 3) In order to improve the efficiency of isolation and save cost at the same time, the relative position of the vibration source to the piles and to the gap between the piles should also be considered; 4) When the row piles distribution width is fixed, the first-appearing maximum displacement behind the row of piles may be amplified with the reduction of pile spacing, due to the effect of incident wave curvature on the scattering of the row pile, so that a reasonable pile spacing should be used to block the cylindrical SH waves.

Key words: cylindrical SH wave, wave function expansion method, row pile scattering, time domain

中图分类号: 

  • TU473
[1] Pao Y H, Mow C C. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M]. New York:Crane Russak and Company, Inc, 1973:239-363.
[2] Avilés J, Sánchez-Sesma F J. Piles as Barriers for Elastic Waves[J]. Journal of Geotechnical Engineering, 1983, 109(9):1133-1146.
[3] Avilés J, Sánchez-Sesma F J. Foundation Isolation from Vibrations Using Piles as Barriers[J]. Journal of Engineering Mechanics, 1988, 114(11):1854-1870.
[4] 徐平, 周新民, 夏唐代. 非连续圆柱实心桩屏障对弹性波的隔离[J]. 振动工程学报, 2007, 20(4):388-395. Xu Ping, Zhou Xinmin, Xia Tangdai. Discontinuous Barrier Used a Row of Elastic Piles for Incident Elastic Waves[J]. Journal of Vibration Engineering, 2007, 20(4):388-395.
[5] 徐平, 夏唐代, 周新民. 单排空心管桩屏障对平面SV波的隔离效果研究[J]. 岩土工程学报, 2007, 29(1):131-136. Xu Ping, Xia Tangdai, Zhou Xinmin. Study on Effect of Barrier of a Row of Hollow Pipe Piles on Isolation of Incident Plane SV Waves[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1):131-136.
[6] 徐平, 闫东明, 邓亚虹, 等. 单排非连续刚性桩屏障对弹性波的隔离[J]. 振动与冲击, 2007, 26(11):133-137. Xu Ping, Yan Dongming, Deng Yahong, et al. Isolation of Elastic Waves by a Single Row of Discontinuous Rigid Pile Barriers[J]. Vibration and Shock, 2007, 26(11):133137.
[7] Xia T D, Sun M M, Chen C, et al. Analysis of Multiple Scattering by an Arbitrary Configuration of Piles as Barriers for Vibration Isolation[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3):535-545.
[8] 夏唐代, 孙苗苗, 陈晨. 多重散射问题的改进算法以及双排非连续弹性屏障对水平向剪切波的隔离研究[J]. 岩土力学, 2011, 32(8):2402-2408. Xia Tangdai, Sun Miaomiao, Chen Chen. An Improved Method for Multiple Scattering and Isolation of Horizontal Shear Wave Using Double Row of Elastic Discontinuous Barrier[J]. Rock and Soil Mechanics, 2011, 32(8):2402-2408.
[9] 孙苗苗. 任意排列的空心管桩屏障对SH波的多重散射[J]. 岩土力学, 2014, 35(4):943-950. Sun Miaomiao. Multiple Scattering of SH Saves by Rows of Arbitrarily Arranged Tubular Piles[J]. Rock and Soil Mechanics, 2014, 35(4):943-950.
[10] 孙苗苗, 夏唐代. 多排任意排列的弹性桩屏障对平面P波或SV波多重散射[J]. 振动与冲击, 2014, 33(6):148-155. Sun Miaomiao, Xia Tangdai. Multiple Arrays of Randomly Arranged Elastic Pile Barriers Multiple Scattering of Plane P Waves or SV Waves[J]. Vibration and Shock, 2014, 33(6):148-155.
[11] 侯键, 夏唐代, 孙苗苗, 等.任意排列的固定刚性桩屏障对SH波的多重散射[J]. 浙江大学学报(工学版), 2012, 46(7):1269-1274. Hou Jian, Xia Tangdai, Sun Miaomiao, et al. Multiple Scattering of SH Waves by Arbitrary Arrangement of Fixed Rigid Pile Barriers[J]. Journal of Zhejiang University (Engineering Science Edition), 2012, 46(7):1269-1274.
[12] 巴振宁, 刘世朋, 吴孟桃, 等.周期分布桩体对平面SH波隔振效应的解析求解[J]. 岩土力学, 2020, 41(9):1-9. Ba Zhenning, Liu Shipeng, Wu Mengtao, et al. Analytical Solution for Isolation Effect of Plane SH Waves by Periodically Distributed Piles[J]. Rock and Soil Mechanics, 2020, 41(9):1-9.
[13] 丁美.地下圆形衬砌隧洞对柱面SH波的散射解析解[D].天津:天津大学, 2004. Ding Mei. On Scattering and Diffraction of Underground, Circular, Lined Tunnels Subjected to Incident Cylindrical SH Waves[D]. Tianjin:Tianjin University, 2004.
[14] 李艳.地下圆形洞室对柱面SH波的散射[D].天津:天津大学, 2006. Li Yan. Scattering of Cylindrical SH Waves by Underground, Circular Cavity[D]. Tianjin:Tianjin University, 2006.
[15] 石亮.地下圆形洞室群对柱面P和SV波的散射[D].天津:天津大学, 2008. Shi Liang. Scattering of Cylindrical P and SV Caves by Underground, Circular Cavities[D]. Tianjin:Tianjin University, 2008.
[16] 梁建文, 丁美, 杜金金.柱面SH波在地下圆形衬砌洞室周围散射解析解[J]. 地震工程与工程振动, 2013, 33(1):1-7. Liang Jianwen, Ding Mei, Du Jinjin. Diffraction of Cylindrical SH Waves Around Circular Lined Cavity:Analytical Solution[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(1):1-7.
[17] Trifunac M D. Surface Motion of a Semi-Sylindrical Alluvial Valley for Incident Plane SH Wave[J]. Bulletin of Seismological and Society of America, 1971, 61(6):1755-1770.
[18] 陈敬国.波场模拟中的震源:Ricker子波浅析[EB/OL]. [2021-07-20]. http://www.paper.edu.cn/releasepaper/content/200607-105. Chen Jingguo. Seismic Source:Ricker Wavelet Analysis in Wave Field Simulation[EB/OL]. [2021-07-20]. http://www.paper.edu.cn/releasepaper/content/200607-105.
[19] 宋新武, 郑浚茂, 范兴燕, 等.基于Ricker子波匹配追踪算法在薄互层砂体储层预测中的应用[J]. 吉林大学学报(地球科学版), 2011, 41(增刊1):387-392. Song Xinwu, Zheng Junmao, Fan Xingyan, et al.Based on Ricker Wavelet Matching Pursuit Algorithm in Thin Interbedded Sand Body Reservoir Prediction[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Sup. 1):387-392.
[1] 路德春, 马一丁, 王国盛. 近接隧道列车运行时地表振动响应数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1452-1462.
[2] 嵇艳鞠,冯雪,于明媚,徐江,呼彦朴,关珊珊. 基于多元线性回归的HTEM三维异常体电导率-深度识别[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1687-1694.
[3] 刘四新, 周俊峰, 吴俊军, 曾昭发, 万洪祥. 金属矿钻孔雷达探测的数值模拟[J]. J4, 2010, 40(6): 1479-1484.
[4] 史彦新,张青,孟宪玮. 分布式光纤传感技术在滑坡监测中的应用[J]. J4, 2008, 38(5): 820-0824.
[5] 高彦伟,董德明,陈殿友,张岩坤,韩晓华. 时域克里格方法在地表水水质预测中的应用[J]. J4, 2008, 38(3): 444-0447.
[6] 杨海燕,岳建华. 巷道影响下三维全空间瞬变电磁法响应特征[J]. J4, 2008, 38(1): 129-0134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .