吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1400-1407.doi: 10.13278/j.cnki.jjuese.20210017

• 岩土防灾与减灾 • 上一篇    下一篇

CFD-DEM耦合模拟中拖曳力模型精度

彭恺然1,2, 刘红帅1,2, 平新雨1,2, 程旷1,2   

  1. 1. 河北大学建筑工程学院, 河北 保定 071000;
    2. 河北大学岩土工程研究所, 河北 保定 071000
  • 收稿日期:2021-01-18 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 程旷(1991-),男,讲师,博士,主要从事岩土工程方面的教学与研究工作,E-mail:kchengdut@163.com E-mail:kchengdut@163.com
  • 作者简介:彭恺然(1995-),男,硕士研究生,主要从事CFD-DEM细观流固耦合方法方面的研究,E-mail:pengkairan95@163.com
  • 基金资助:
    国家自然科学基金项目(52009025);河北省自然科学基金项目(E2020201013,E2020201017)

Accuracy of Drag Force Models in the CFD-DEM Method

Peng Kairan1,2, Liu Hongshuai1,2, Ping Xinyu1,2, Cheng Kuang1,2   

  1. 1. College of Civil Engineering and Architecture, Hebei University, Baoding 071000, Hebei, China;
    2. Institute of Geotechnical Engineering, Hebei University, Baoding 071000, Hebei, China
  • Received:2021-01-18 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (52009025) and the Natural Science Foundation of Hebei Province (E2020201013, E2020201017)

摘要: CFD-DEM耦合方法已广泛应用于岩土流固耦合问题分析,其模拟准确性与其中用于处理颗粒-流体相互作用的拖曳力模型密切相关。为了探究拖曳力模型精度的影响因素,采用CFD-DEM耦合方法建立了水中单颗粒沉降数值模型,模拟中考虑了3种典型拖曳力模型以及多种颗粒尺寸,将模拟得到的最终沉降速度与经验公式预测结果进行对比,分析了不同颗粒雷诺数(Rep)时3种拖曳力模型(Ergun、Wen和Yu模型,Di Felice模型,Hill和Koch模型)的模拟精度。结果表明,Ergun、Wen和Yu模型以及Di Felice模型的精度均随着Rep的增大而降低,而Hill和Koch模型的精度随着Rep的增大出现先升高后降低的趋势:一般情况下,当Rep≤14以及Rep>72时,3种拖曳力模型的精度从高到低顺序为Ergun、Wen和Yu模型> Di Felice模型> Hill和Koch模型;而当14< Rep≤40时,Hill和Koch模型的精度最高,Di Felice模型的精度最低;当40<Rep≤72时,3种拖曳力模型的精度从高到低顺序为Ergun、Wen和Yu模型>Hill和Koch模型>Di Felice模型。

关键词: 离散元(DEM), 计算流体动力学(CFD), 拖曳力模型, 单颗粒沉降

Abstract: The CFD-DEM coupling method has been widely used in the modelling of fluid-solid interactions in geotechnical engineering. The accuracy of the CFD-DEM modelling is strongly influenced by the precision of the drag force models used to deal with particle-fluid interactions. In this study, the sedimentation of a single particle in water was modeled by using the CFD-DEM method, three typical drag force models and various particle sizes were considered in the simulations, the terminal sedimentation velocities of particles were obtained in the simulations and then compared with those predicted by a popular empirical model, and the influence of the particle Reynolds number (Rep) on the accuracy of the drag force models was analyzed. The results show that the accuracies of both the Ergun, Wen and Yu model and the Di Felice model decrease, while the accuracy of the Hill and Koch model firstly increases and then decreases with the increasing of Rep. Generally, when Rep ≤ 14 and Rep>72, the relative magnitudes of the accuracy of the three drag force models are as follows:Ergun, Wen and Yu model>Di Felice model>Hill and Koch model; However, when 14<Rep ≤ 40, Hill and Koch model has the highest accuracy, while the Di Felice model has the lowest accuracy; When 40<Rep ≤ 72, the relative magnitudes of the accuracy of the three drag force models are Ergun, Wen and Yu model > Hill and Koch model > Di Felice model.

Key words: discrete element method(DEM), computational fluid dynamics (CFD), drag force models, single particle sedimentation

中图分类号: 

  • TU46
[1] 季顺迎.计算颗粒力学及工程应用[M]. 北京:科学出版社, 2018. Ji Shunying. Computational Granular Mechanics and Its Engineering Applications[M]. Beijing:Science Press, 2018.
[2] Cundall P A, Strack O D L. A Discrete Numerical Model for Granular Assemblies[J]. Géotechnique, 1979, 29(1):47-65.
[3] Tsuji Y, Kawaguchi T, Tanaka T. Discrete Particle Simulation of Two-Dimensional Fluidized Bed[J]. Powder Technology, 1993, 77(1):79-87.
[4] El Shamy U, Zeghal M. Coupled Continum Discrete Model for Saturated Granular Soils[J]. Journal of Engineering Mechanics, 2005, 131(4):413-426.
[5] El Shamy U, Zeghal M. A Micro-Mechanical Investigation of the Dynamic Response and Liquefaction of Saturated Granular Soils[J]. Soil Dynamics and Earthquake Engineering, 2007, 27:712-729.
[6] Zhao J, Shan T. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics[J]. Powder Technology, 2013, 239:248-258.
[7] 蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2013, 36(5):793-801. Jiang Mingjing, Zhang Wangcheng. Coupled CFD-DEM Method for Soils Incorporating Equation of State for Liquid[J]. Journal of Geotechnical Engineering, 2013, 36(5):793-801.
[8] 洪勇, 李子睿, 唐少帅, 等.平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1814-1822.
[9] 周健, 周凯敏, 姚志雄, 等. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, 2010, 41(1):17-24. Zhou Jian, Zhou Kaimin, Yao Zhixiong, et al. Numerical Simulation of Piping-Filter Prevention in Sandy Soil by Discrete Element Method[J]. Chinese Journal of Water Resources, 2010, 41(1):17-24.
[10] 程旷. 基于离散元的渗流致断级配土颗粒运移数值分析方法研究[D].大连:大连理工大学, 2019. Cheng Kuang.Study on DEM-Based Numerical Methods for Seepage-Induced Fine Particle Migration in Gap-Graded Soils[D]. Dalian:Dalian University of Technology, 2019.
[11] Ergun S. Fluid Flow Through Packed Columns[J]. Chemical Engineering Progress, 1952, 48:89-94.
[12] 吴野. 天然岩土颗粒材料液体中拖曳力系数试验研究[D].大连:大连理工大学, 2017. Wu Ye.Experimental Study on the Drag Force Coefficient of Natural Geotechnical Particle Materials in the Liquid[D]. Dalian:Dalian University of Technology, 2017.
[13] Di Felice R. The Voidage Function for Fluid-Particle Interaction Systems[J]. International Journal of Multiphase Flow, 1994, 20(1):153-159.
[14] Hill R J, Koch D L, Ladd A J C. Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres[J]. Journal of Fluid Mechanics, 2001, 448:243-278.
[15] Guo Y, Yu X B. Comparison of the Implementation of Three Common Types of Coupled CFD-DEM Model for Simulating Soil Surface Erosion[J]. International Journal of Multiphase Flow, 2017, 91:89-100.
[16] Zhao J, Shan T. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics[J]. Powder Technology, 2013, 239:248-258.
[17] Hu Z, Zhang Y, Yang Z. Suffusion-Induced Deformation and Microstructural Change of Granular Soils:A Coupled CFD-DEM Study[J]. Acta Geotechnica, 2019, 14(1):795-814.
[18] Vaibhav A, Yogesh S, hah M T, et al. Effect of Drag Models on CFD-DEM Predictions of Bubbling Fluidized Beds with Geldart D Particles[J]. Advanced Powder Technology, 2018, 29:S0921883118303212.
[19] Wdfa B, Jm A. CFD-DEM Solution Verification:Fixed-Bed Studies[J]. Powder Technology, 2018, 339:760-764.
[20] Wen C Y, Yu Y H. A Generalized Method for Predicting the Minimum Fluidization Velocity[J]. AIChE Journal, 1966, 12(3):610-612.
[21] Cheng K, Wang Y, Yang Q, et al. Determination of Microscopic Parameters of Quartz Sand Through Tri-Axial Test Using the Discrete Element Method[J]. Computers and Geotechnics, 2017, 92:22-40.
[22] Cheng K, Wang Y, Yang Q. A Semi-Resolved CFD-DEM Model for Seepage-Induced Fine Particle Migration in Gap-Graded Soils[J]. Computers and Geotechnics, 2018, 100:30-51.
[23] Kloss C, Goniva C, Hager A, et al. Models, Algorithms and Validation for Opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics:An International Journal, 2012, 12(2/3):140-152.
[24] Brown P P, Lawler D F. Sphere Drag and Settling Velocity Revisited[J]. Journal of Environmental Engineering, 2003, 129(3):222-231.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[2] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[3] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[4] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[5] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[6] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[7] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[8] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .