吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1400-1407.doi: 10.13278/j.cnki.jjuese.20210017
彭恺然1,2, 刘红帅1,2, 平新雨1,2, 程旷1,2
Peng Kairan1,2, Liu Hongshuai1,2, Ping Xinyu1,2, Cheng Kuang1,2
摘要: CFD-DEM耦合方法已广泛应用于岩土流固耦合问题分析,其模拟准确性与其中用于处理颗粒-流体相互作用的拖曳力模型密切相关。为了探究拖曳力模型精度的影响因素,采用CFD-DEM耦合方法建立了水中单颗粒沉降数值模型,模拟中考虑了3种典型拖曳力模型以及多种颗粒尺寸,将模拟得到的最终沉降速度与经验公式预测结果进行对比,分析了不同颗粒雷诺数(Rep)时3种拖曳力模型(Ergun、Wen和Yu模型,Di Felice模型,Hill和Koch模型)的模拟精度。结果表明,Ergun、Wen和Yu模型以及Di Felice模型的精度均随着Rep的增大而降低,而Hill和Koch模型的精度随着Rep的增大出现先升高后降低的趋势:一般情况下,当Rep≤14以及Rep>72时,3种拖曳力模型的精度从高到低顺序为Ergun、Wen和Yu模型> Di Felice模型> Hill和Koch模型;而当14< Rep≤40时,Hill和Koch模型的精度最高,Di Felice模型的精度最低;当40<Rep≤72时,3种拖曳力模型的精度从高到低顺序为Ergun、Wen和Yu模型>Hill和Koch模型>Di Felice模型。
中图分类号:
[1] 季顺迎.计算颗粒力学及工程应用[M]. 北京:科学出版社, 2018. Ji Shunying. Computational Granular Mechanics and Its Engineering Applications[M]. Beijing:Science Press, 2018. [2] Cundall P A, Strack O D L. A Discrete Numerical Model for Granular Assemblies[J]. Géotechnique, 1979, 29(1):47-65. [3] Tsuji Y, Kawaguchi T, Tanaka T. Discrete Particle Simulation of Two-Dimensional Fluidized Bed[J]. Powder Technology, 1993, 77(1):79-87. [4] El Shamy U, Zeghal M. Coupled Continum Discrete Model for Saturated Granular Soils[J]. Journal of Engineering Mechanics, 2005, 131(4):413-426. [5] El Shamy U, Zeghal M. A Micro-Mechanical Investigation of the Dynamic Response and Liquefaction of Saturated Granular Soils[J]. Soil Dynamics and Earthquake Engineering, 2007, 27:712-729. [6] Zhao J, Shan T. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics[J]. Powder Technology, 2013, 239:248-258. [7] 蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2013, 36(5):793-801. Jiang Mingjing, Zhang Wangcheng. Coupled CFD-DEM Method for Soils Incorporating Equation of State for Liquid[J]. Journal of Geotechnical Engineering, 2013, 36(5):793-801. [8] 洪勇, 李子睿, 唐少帅, 等.平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1814-1822. [9] 周健, 周凯敏, 姚志雄, 等. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, 2010, 41(1):17-24. Zhou Jian, Zhou Kaimin, Yao Zhixiong, et al. Numerical Simulation of Piping-Filter Prevention in Sandy Soil by Discrete Element Method[J]. Chinese Journal of Water Resources, 2010, 41(1):17-24. [10] 程旷. 基于离散元的渗流致断级配土颗粒运移数值分析方法研究[D].大连:大连理工大学, 2019. Cheng Kuang.Study on DEM-Based Numerical Methods for Seepage-Induced Fine Particle Migration in Gap-Graded Soils[D]. Dalian:Dalian University of Technology, 2019. [11] Ergun S. Fluid Flow Through Packed Columns[J]. Chemical Engineering Progress, 1952, 48:89-94. [12] 吴野. 天然岩土颗粒材料液体中拖曳力系数试验研究[D].大连:大连理工大学, 2017. Wu Ye.Experimental Study on the Drag Force Coefficient of Natural Geotechnical Particle Materials in the Liquid[D]. Dalian:Dalian University of Technology, 2017. [13] Di Felice R. The Voidage Function for Fluid-Particle Interaction Systems[J]. International Journal of Multiphase Flow, 1994, 20(1):153-159. [14] Hill R J, Koch D L, Ladd A J C. Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres[J]. Journal of Fluid Mechanics, 2001, 448:243-278. [15] Guo Y, Yu X B. Comparison of the Implementation of Three Common Types of Coupled CFD-DEM Model for Simulating Soil Surface Erosion[J]. International Journal of Multiphase Flow, 2017, 91:89-100. [16] Zhao J, Shan T. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics[J]. Powder Technology, 2013, 239:248-258. [17] Hu Z, Zhang Y, Yang Z. Suffusion-Induced Deformation and Microstructural Change of Granular Soils:A Coupled CFD-DEM Study[J]. Acta Geotechnica, 2019, 14(1):795-814. [18] Vaibhav A, Yogesh S, hah M T, et al. Effect of Drag Models on CFD-DEM Predictions of Bubbling Fluidized Beds with Geldart D Particles[J]. Advanced Powder Technology, 2018, 29:S0921883118303212. [19] Wdfa B, Jm A. CFD-DEM Solution Verification:Fixed-Bed Studies[J]. Powder Technology, 2018, 339:760-764. [20] Wen C Y, Yu Y H. A Generalized Method for Predicting the Minimum Fluidization Velocity[J]. AIChE Journal, 1966, 12(3):610-612. [21] Cheng K, Wang Y, Yang Q, et al. Determination of Microscopic Parameters of Quartz Sand Through Tri-Axial Test Using the Discrete Element Method[J]. Computers and Geotechnics, 2017, 92:22-40. [22] Cheng K, Wang Y, Yang Q. A Semi-Resolved CFD-DEM Model for Seepage-Induced Fine Particle Migration in Gap-Graded Soils[J]. Computers and Geotechnics, 2018, 100:30-51. [23] Kloss C, Goniva C, Hager A, et al. Models, Algorithms and Validation for Opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics:An International Journal, 2012, 12(2/3):140-152. [24] Brown P P, Lawler D F. Sphere Drag and Settling Velocity Revisited[J]. Journal of Environmental Engineering, 2003, 129(3):222-231. |
No related articles found! |
|