吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (1): 194-.

• 地质工程与环境工程 • 上一篇    下一篇

基于KRR优化算法的油水系统中CO2溶解度模型

  

  1. 1.长江大学石油工程学院,武汉430100
    2.油气钻采工程湖北省重点实验室(长江大学),武汉430100
  • 收稿日期:2021-04-29 出版日期:2022-01-27 发布日期:2022-03-02
  • 通讯作者: 王长权(1979—), 男, 副教授, 博士, 主要从事油气相态理论及注气提高采收率技术等方面的研究, Email: wonque@163.com 基金项目:国家自然科学基金项目(51404037)
  • 基金资助:
    国家自然科学基金项目(51404037)

CO2 Solubility Model of OilWater System Based on KRR Optimization Algorithm

  1. 1. School of Petroleum Engineering College, Yangtze University,Wuhan 430100,China
    2. Key Laboratory for OilGas Drilling and Production Engineering of Hubei Province(Yangtze University),Wuhan 430100,China 
  • Received:2021-04-29 Online:2022-01-27 Published:2022-03-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (51404037)

摘要: 油藏中注入CO2可形成CO2原油地层水三相动态平衡,CO2在油水系统中的溶解度将直接影响CO2驱油效果和封存潜力。为了对CO2在油水系统中的溶解度模型进行研究,以吉林油田某油水系统为例,利用高温高压PVT分析仪开展CO2在不同体积比例油水系统中的溶解度实验,明确了CO2在油水系统中的溶解规律,并基于实验数据,分别利用网格搜索法(GS)和贝叶斯优化算法(BOA)对核岭回归算法(KRR)的参数进行优化,建立了CO2在油水系统中的溶解度预测模型。研究结果表明:CO2在油水系统中的溶解度随CO2注入量的增加而增大,也随油水体积比升高而增大;基于KRR算法的优化模型中,GSKRR模型和BOAKRR模型平均相对误差分别为6.758%和1.998%,说明BOAKRR具有更高的预测精度。利用BOAKRR模型预测并绘制不同温度、不同油水体积比下的CO2在油水系统中的溶解度图版,可为CO2碳捕集、利用与封存(CCUS)技术的应用提供支持。

关键词: 核岭回归算法(KRR), 贝叶斯优化算法(BOA), 网格搜索法(GS), CO2溶解度, 溶解度图版, 碳捕集、利用与封存(CCUS)技术

Abstract:  In the process of CO2 injection, a threephase dynamic equilibrium of CO2, crude oil, and formation water is formed. The solubility of CO2 in oilwater system will directly affect the displacement effect and storage potential of CO2. In order to study the solubility of CO2 in oilwater system, by taking the oilwater system of Jilin oilfield as an example, the solubility experiment of CO2 in oilwater system with different volume proportion was carried out by using PVT analyzer, and the solubility rule of CO2 in oilwater system was clarified. In the experiment, the solubility of CO2 in oilwater system increased with the increase of saturation pressure and oilwater volume ratio. Based on the experimental data, the parameters of kernel ridge regression(KRR) were optimized by Grid search method (GS) and Bayesian optimization algorithm (BOA), respectively, and the CO2 solubility prediction model of CO2 in oilwater system was established. The average relative errors of GSKRR model and BOAKRR model in the optimization model based on KRR algorithm are 6.758% and 1.998% respectively. It shows that by this BOAKRR model , the solubility of CO2 in oilwater system can be predicted and plotted with higher precision. By using BOAKRR model, the solubility chart of CO2 in oilwater system under different temperature and oilwater ratio provides support for the application of CCUS(carbon capture, utilization and storage) technology.

Key words:  , kernel ridge regression(KRR), Bayesian optimization algorithm (BOA), grid search(GS) , CO2 solubility, solubility chart, carbon capture, utilization and storage technology

中图分类号: 

  • TE82
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[2] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[3] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[4] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[5] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[6] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[7] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[8] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[9] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .
[10] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .