深度学习,多特征,密集链接,Focal Loss,Dice Loss,LayerScale模块,改进U-Net,语义分割
," /> 深度学习,多特征,密集链接,Focal Loss,Dice Loss,LayerScale模块,改进U-Net,语义分割
,"/> <span>基于改进U-Net的遥感图像语义分割</span>

吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (5): 1752-1763.doi: 10.13278/j.cnki.jjuese.20230145

• 地球探测与信息技术 • 上一篇    下一篇

基于改进U-Net的遥感图像语义分割

高康哲,王凤艳,刘子维,王明常   

  1. 吉林大学地球探测科学与技术学院,长春130026
  • 出版日期:2024-09-26 发布日期:2024-10-12
  • 基金资助:

    国家自然科学基金项目(42077242,42171407);自然资源部城市国土资源监测与仿真重点实验室开放基金项目(KF-2020-05-024);吉林省自然科学基金项目(20210101098JC)


Semantic Segmentation of Remote Sensing Images Based on Improved U-Net

Gao Kangzhe, Wang Fengyan, Liu Ziwei, Wang Mingchang   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Online:2024-09-26 Published:2024-10-12
  • Supported by:
    Supported by the National Natural Science Foundation of China (42077242, 42171407), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources of China (KF-2020-05-024) and the Natural Science Foundation of Jilin Province  (20210101098JC)

摘要:

全卷积神经网络在遥感图像语义分割中得到了广泛应用,该方法地物分类精度和效率较高,但对地物分布不均匀遥感图像占比较少地物的分类准确率较低。为了提高遥感图像的分类精度,本文通过添加先验知识方法丰富输入数据特征,采用密集链接方式提高上下采样过程中特征的重复利用率,采用可以优化交并比的损失函数Dice Loss和可以提高难分类类别精度的损失函数Focal Loss相加组合作为网络模型的损失函数,采用LayerScale模块加快模型收敛、抑制无用特征、突出有效特征的方式,对U-Net的输入、网络结构、损失函数进行改进,优化语义分割效果。结果表明,基于高分影像数据集(GID)改进的U-Net相较于原始U-Net像素精度、均类像素精度、平均交并比分别提高了0.023 3、0.040 9、0.066 5,提升了地物分类精度,取得了较好的分类效果。


关键词: 深度学习')">

深度学习, 多特征, 密集链接, Focal Loss, Dice Loss, LayerScale模块, 改进U-Net, 语义分割

Abstract:

Fully convolutional neural network has been widely used in semantic segmentation of remote sensing images, and the accuracy and efficiency of feature classification are high, but for remote sensing images with uneven distribution of features, the accuracy of feature classification is low. In order to improve the classification accuracy of remote sensing images, this paper enriches the input data features by adding priori knowledge methods, uses the dense link method to improve the reuse rate of features in the process of up and down sampling, combines the loss function Dice Loss that can optimize the intersection of union and the Focal Loss that can improve the accuracy of difficult classification categories as the loss function of the network, and uses the LayerScale module to accelerate the model convergence and suppress irrelevant features while emphasizing useful features, improves input, network structure and loss function of U-Net to optimize the effect of semantic segmentation. The results show that, compared with the original U-Net, the improved U-Net based on Gaofen image  dataset is improved by 0.023 3, 0.040 9 and 0.066 5 in terms of pixel accuracy, average pixel accuracy and mean intersection of union, respectively, which improves the classification accuracy of ground objects and achieves better classification effects.

Key words: deep learning, multi-feature, dense linking, Focal Loss, Dice Loss, LayerScale module, improved U-Net, semantic segmentation

中图分类号: 

  • TP753
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!