页岩油“甜点”储层,BlendMask,扫描电镜图像,矿物成分,分割与识别 ," /> 页岩油“甜点”储层,BlendMask,扫描电镜图像,矿物成分,分割与识别 ,"/> shale oil “sweet spot” reservoirs, BlendMask, scanning electron microscope images, mineralogical composition, segmentation and identification ,"/> <p class="pf0"> <span class="cf0">基于改进</span><span class="cf0">BlendMask</span><span class="cf0">的页岩扫描</span>电镜图像矿物鉴定方法

吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (4): 1387-1400.doi: 10.13278/j.cnki.jjuese.20240007

• 地球探测与信息技术 • 上一篇    

基于改进BlendMask的页岩扫描电镜图像矿物鉴定方法

张可佳1,廖明月1,刘涛1,赵玉武2,刘宗堡3,田枫1,张岩1,贺友志2   

  1. 1. 东北石油大学计算机与信息技术学院,黑龙江 大庆 163318

    2. 大庆油田有限责任公司第八采油厂,黑龙江 大庆 163514

    3. 东北石油大学地球科学学院,黑龙江 大庆 163318

  • 收稿日期:2024-01-10 出版日期:2025-07-26 发布日期:2025-08-05
  • 通讯作者: 刘涛(1994—),男,博士研究生,主要从事深度学习与非常规储层评价研究,E-mail:ltao@nepu.edu.cn
  • 作者简介:张可佳(1986—),男,副教授,硕士生导师,黑龙江省油田信息化科研创新人才,黑龙江省高校青年创新人才,主要从事人工智能及其在油田生产的应用研究,E-mail:zkj@nepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42172161);黑龙江省教育厅人才类项目(UNPYSCT-2020144);黑龙江省省属本科高校基本科研业务费项目(2022TSTD-03);黑龙江省高校基本科研业务费项目(2022YDL-15)

An Identification Method of Shale Scanning Electron Microscope Image Based on Improved BlendMask

Zhang Kejia1, Liao Mingyue1, Liu Tao1, Zhao Yuwu2, Liu Zongbao3Tian Feng1, Zhang Yan1, He Youzhi2   

  1. 1. School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang, China

    2. The Eighth Oil Production Plant of Daqing Oilfield Co., Ltd., Daqing 163514, Heilongjiang, China

    3. School of Earth Sciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China

  • Received:2024-01-10 Online:2025-07-26 Published:2025-08-05
  • Supported by:

    the National Natural Science Foundation of China (42172161), the Talent Project of Education Department of Heilongjiang Province (UNPYSCT-2020144), the Basic Research Expenses of Heilongjiang Provincial Universities (2022TSTD-03) and the Basic Research Expenses for Colleges and Universities in Heilongjiang Province (2022YDL-15)

摘要:

页岩扫描电镜(scanning electron microscope, SEM)图像智能识别能够快速分析页岩储层矿物,是页岩油储层“甜点”预测的重要手段之一,也是未来的技术发展趋势。传统方法在鉴定矿物成分时存在自动化程度低、样本适配度低和特征提取受限等问题。为此,本文提出基于BlendMask的页岩SEM图像鉴定方法。首先,采用双边滤波、拉普拉斯和图像归一化等图像预处理技术对原始图像进行去噪、锐化和像素统一处理,提高训练样本的质量;然后,采用旋转、缩放、光度变化等图像增广方法构建增广策略,扩大数据集数量;最后,利用注意力机制和深度可分离卷积改进BlendMask网络,实现图像的成分分割与识别。应用于海塔盆地的页岩SEM图像实验结果表明,相比BlendMask模型,改进后方法的分割准确率和召回率分别提升了0.02~0.20和0~0.59,分割用时减少了1.29~2.70 s。

关键词: 页岩油“甜点”储层')">

页岩油“甜点”储层, BlendMask')">BlendMask, 扫描电镜图像, 矿物成分, 分割与识别

Abstract:

The intelligent identification of shale scanning electron microscope (SEM) images can rapidly analyze shale reservoir minerals, which is one of the important means of predicting the “sweet spot” of shale oil reservoirs, and is also a future technological development trend. Traditional methods have problems such as low automation, low sample suitability, and limited feature extraction when identifying mineral components. To this end, this paper proposes a BlendMask-based SEM image characterization method for shale. Firstly, image preprocessing techniques such as bilateral filtering, Laplacian, and image normalization are used to denoise, sharpen, and unify the pixel of original images to improve the quality of training samples; Then, image augmentation methods such as rotation, scaling, and luminosity change are used to construct augmentation strategies to expand the number of datasets; And finally, the BlendMask network is improved by using the attention mechanism and the depth separable convolution which is used to realize the component segmentation and recognition of images. The experimental results of shale SEM images applied to Haita basin show that the segmentation accuracy and recall of the improved method are improved by 0.02-0.20 and 0-0.59, respectively, and the segmentation time is reduced by 1.29-2.70 s compared to the BlendMask model.

Key words: shale oil “sweet spot” reservoirs')">

shale oil “sweet spot” reservoirs, BlendMask')"> BlendMask, scanning electron microscope images, mineralogical composition, segmentation and identification

中图分类号: 

  • TP391
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .