吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (6): 1806-1836.doi: 10.13278/j.cnki.jjuese.20250178

• 地质与资源 • 上一篇    下一篇

花岗岩潜山储层地质研究回顾

唐华风1,付琦1,尹永康2,高有峰1,户景松1,武海超1,田志文1   

  1. 1.吉林大学地球科学学院,长春130061
    2.中海石油(中国)有限公司深圳分公司,广东深圳518054

  • 出版日期:2025-11-26 发布日期:2025-12-30
  • 作者简介:唐华风(1979—),男,教授,博士生导师,主要从事火成岩储层和火山地层综合方面的研究,E-mail: tanghfhc@jlu.edu.cn
  • 基金资助:
    国家科技重大专项( 2025ZD1402803);吉林省重点研发计划项目(20230203107SF)

A Review of Geological Studies on Granite Buried-Hill Reservoirs

Tang Huafeng1, Fu Qi1, Yin Yongkang2, Gao Youfeng1,  Hu Jingsong1, Wu Haichao1, Tian Zhiwen1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China
    2. CNOOC China Limited, Shenzhen Branch, Shenzhen 518054, Guangdong, China
  • Online:2025-11-26 Published:2025-12-30
  • Supported by:
    Supported by the National Science and Technology Major Project  (2025ZD1402803) and the Key Research and Development Program of Jilin Province (20230203107SF)

摘要: 全球17个国家的25个盆地揭示了花岗岩潜山油气藏,共发现超30亿t油当量探明储量,在中国的盆地中发现了超15亿t油当量探明储量。花岗岩已成为中国油气勘探的重要目标,在储集空间类型、岩石物性、储层分布规律和储层成因等方面取得了丰富的成果。储集空间有7类12型,多为次生孔隙和次生裂缝,少量为原生气孔;各油气藏储集空间类型特征存在差异。花岗岩潜山储层以低孔—特低孔型和中—低渗型储层为主。风化壳厚度多数在40~280 m之间。花岗岩潜山储层物性随着距风化壳顶面距离的增大而减小,少数情况在深部也有高孔隙带。多数油层/可疑油层/气层/含油水层/含气水层均分布在风化壳顶部约200 m范围内,且多集中在150 m范围内。花岗岩潜山储层具有分带性,残积带、风化溶蚀带以孔隙型储层为主,风化裂缝带以裂缝-孔隙型储层为主,基岩带以裂缝型储层为主;构造裂缝具有甜点式分布特征。利用单轴抗压强度、渗透率和化学蚀变指数等参数可建立风化壳垂向分带的量化关系。储层形成机理主要是构造作用、风化作用、侵蚀作用和埋藏溶蚀作用等。构造作用分为两个方面,通过岩石力学测试结果构造作用分为两个方面:有利的成缝内因条件是粗粒晶体、石英和钾长石含量高;有利的成缝外因条件是岩石具有快速降温过程、出露地表阶段经受强应力改造等。风化作用可以在残积带和风化溶蚀带形成丰富的风化粒间孔、风化缝、铸模孔、筛状孔、晶内微孔和溶蚀缝等。侵蚀作用影响着残积带和风化溶蚀带的保存,潜山顶面坡度小有利于残积带和风化溶蚀带的保存。埋藏溶蚀溶解作用可进一步扩大先存溶蚀孔和裂缝,促进基岩带的内幕储层区的发育;指出内幕储层在盆地沉降中心区域更为发育。残积带和风化溶蚀层顶部储层在压实条件孔隙演化服从改进型的Athy公式;斜长石含量与孔隙度降幅和平均粒径均呈负相关,化学蚀变指数与孔隙度减孔量呈正相关。岩石组构的不同、潜山隆升过程与构造应力作用的耦合关系不同,造成了潜山的差异成缝效应。综上,指出花岗岩潜山储层有利区为粒度粗、石英含量高、钾长石含量高、快速隆升、顶面坡度小、邻近盆地沉降中心和后期构造改造强的区域。


关键词: 花岗岩, 潜山, 风化壳, 储层成因, 储层演化, 油气藏

Abstract: Globally, granite buried-hill oil and gas reservoirs have been revealed in 25 basins across 17 countries, with proven reserves exceeding 3 billion tons of oil equivalent. In China’s basins, proven reserves exceed 1.5 billion tons of oil equivalent. Granite has become an important target for oil and gas exploration in China, and rich achievements have been made in reservoir space types, rock physical properties, reservoir distribution patterns and genesis. Studies show that there are 7 categories and 12 types of reservoir spaces, mostly secondary pores and secondary fractures, with a small number of vesicles. The characteristics of reservoir space types vary among different oil and gas reservoirs. Granite buried-hill reservoirs are mainly of low to ultra-low porosity and medium to low permeability. The weathering crust thickness mostly ranges between 40 and 280 meters. The physical properties of granite buried-hill reservoirs decrease with increasing distance from the top of the weathering crust, though in rare cases, high porosity zones also exist at depth. Most oil layers/suspected oil layers/gas layers/oil-bearing water layers/gas-bearing water layers are distributed within about 200 meters to the top of the weathering crust, mostly concentrated within 150 meters. Granite buried-hill reservoirs exhibit zonation: The residual zone and weathering dissolution zone are mainly porous, the weathering fracture zone is mainly porous-fractured, and the bedrock zone is mainly fractured. Structural fractures exhibit a “sweet spot” distribution pattern. Parameters such as uniaxial compressive strength, permeability, and chemical alteration index can be used to establish quantitative relationships for the vertical zonation of the weathering crust. The reservoir formation mechanisms are mainly tectonic activity, weathering, erosion, and burial dissolution. Rock mechanics test results indicate that favorable internal conditions for fracture formation include coarse-grained crystals, high quartz and potassium feldspar content, etc.. Favorable external conditions include rapid cooling processes of the rock, and strong stress transformation during surface exposure. Weathering can form abundant weathering intergranular pores, weathering fractures, mold pores, sieve-like pores, intragranular micropores, and dissolution fractures in the residual zone and weathering dissolution zone. Erosion affects the preservation of the residual zone and weathering dissolution zone. A gentle slope on the top surface of the buried-hill favors the preservation of the residual zone and weathering dissolution zone. Burial dissolution can further expand pre-existing dissolution pores and fractures, promoting the development of inner reservoir zones in the bedrock zone. It is pointed out that inner reservoirs are more developed in the basin subsidence center areas. The porosity evolution of the reservoir at the top of the residual zone and weathering dissolution layer under compaction conditions follows a modified Athy formula. The average particle size and plagioclase content are negatively correlated with the porosity reduction amount while the chemical alteration index is positively correlated with the porosity reduction amount. Differences in rock fabric and the coupling relationship between the buried-hill uplift process and tectonic stress action result in differential fracture effects in buried-hills. In summary, favorable exploration areas for granite buried-hills are identified as regions with coarse grains, high quartz content, high potassium feldspar content, rapid exhumation, gentle slope surface, proximity to the basin subsidence center, and strong late tectonic modification. 


Key words: granite, buried-hill, weathering crust, reservoir genesis, reservoir evolution, oil and gas reservoirs

中图分类号: 

  • P618.13
[1] 任云生, 徐文坦, 李京谋, 孙珍军, 刘干. 新疆东准地区黄羊山A型花岗岩形成时代与多阶段岩浆作用:来自SIMS锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2025, 55(6): 1867-1884.
[2] 张国宾, 冯玥, 赵忠海, 宋学权, 何云龙, 孔金贵. 大兴安岭中段金江沟岩体侏罗纪花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2025, 55(5): 1564-1585.
[3] 汪俊, 王哲, 李书华, 高红芳, 黄永健. 南海管事平顶海山密度结构及其构造意义[J]. 吉林大学学报(地球科学版), 2025, 55(5): 1691-1701.
[4] 尹业长, 姜朋, 郑博, 杨云宝, 李成禄, 刘阳, 刘兆龙, 刘旭显, 范玉超, 赵忠海.

大兴安岭北段库中地区早白垩世花岗岩锆石U-Pb年代学、地球化学特征及其地质意义 [J]. 吉林大学学报(地球科学版), 2025, 55(4): 1163-1180.

[5] 孙铭徽, 李向雨, 刘锦, 张洪祥, 董亚超, 张媛竹卉, 刘芸秀. 华北克拉通辽东半岛晚三叠世林家沟岩体的成因及构造意义[J]. 吉林大学学报(地球科学版), 2025, 55(3): 826-842.
[6] 曹锦山, 张新远, 欧阳光文, 王春涛, 刘建栋, 李五福.

松潘甘孜造山带南缘青海省秋智地区晚三叠世花岗岩体成因及构造背景  [J]. 吉林大学学报(地球科学版), 2025, 55(2): 483-502.

[7] 谢兵, 徐昉昊, 范彩伟, 满勇, 江凡, 徐国盛, 张喜淳, 李安然. 北部湾盆地涠西南凹陷灰岩潜山储层岩溶识别及发育模式[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2029-2046.
[8] 单玄龙, 徐长贵, 衣健, 牛成民, 郝国丽, 郭剑南, 闫博. 中国近海典型含油气盆地中生代岩浆活动与岩浆岩潜山油气藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1773-1787.
[9] 徐春强, 王晨杰, 王蔚. 渤中凹陷北部中生界火山岩储层发育特征及油气成藏条件[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1801-1814.
[10] 黄志, 叶涛, 肖述光, 李飞, 高文博, 戴建芳. 渤海湾盆地沙垒田西北斜坡带碳酸盐岩潜山储层形成与油气成藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1815-1828.
[11] 牛成民, 于海波, 单玄龙, 王冰洁, 郭景震, 邹玉洁, 庞赫, 衣健. 渤海海域锦州25-A构造区中生界火山岩有利储层成因[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1788-1880.
[12] 刘翔宇, 单玄龙, 衣健, 苏思远, 李嘉慧, 庞赫, 邹玉洁. 渤海湾盆地渤中凹陷义县组火山喷发旋回及其分布规律[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1829-1845.
[13] 张坤, 史冬岩, 常翔鲲, 朴星海, 王伟东. 伸展背景下的埃达克质岩:黑龙江呼玛地区早白垩世侵入岩的年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1248-1263.
[14] 于跃江, 赵忠海, 李新鹏, 马丽玲. 张广才岭北部早侏罗世花岗岩年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1224-1247.
[15] 周舰. 冀北大囫囵古元古代花岗岩地球化学特征、岩石成因及其构造意义[J]. 吉林大学学报(地球科学版), 2024, 54(3): 828-839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!