J4

• 地球物理·勘查技术 • 上一篇    下一篇

多频海底声学原位测试信号消除干扰研究

李红星1,2,陶春辉2,刘 财1,邓显明2,周建平2,张金辉2,顾春华2,何拥华2   

  1. 1.吉林大学 地球探测科学与技术学院,长春 130026;2.国家海洋局 第二海洋研究所/海底科学重点实验室,杭州 310012
  • 收稿日期:2006-11-20 修回日期:1900-01-01 出版日期:2007-09-26 发布日期:2007-09-26
  • 通讯作者: 李红星

Study on Signal Denoising of MultiFrequency Seabed in Situ Sediment Acoustic Measurement

LI Hong-xing1,2,TAO Chun-hui2,LIU Cai1,DENG Xian-ming2,ZHOU Jian-ping2,ZHANG Jin-hui2,GU Chun-hua2,HE Yong-hua2   

  1. 1.College of GeoExploration Science and Technology, Jilin University, Changchun 130026,China;2.Second Institute of Oceanography/Key Lab of Submarine Geoscience, SOA ,Hangzhou 310012,China
  • Received:2006-11-20 Revised:1900-01-01 Online:2007-09-26 Published:2007-09-26
  • Contact: LI Hong-xing

摘要: 多频海底声学原位测试系统是由国家海洋局第二海洋研究所自行研制的国内首套海底声学原位测试系统。对多频海底声学原位测试系统的测试信号处理方法进行了初探。海底声学原位测试信号难免会包含干扰信号,其将影响到海底沉积物特性提取的准确性。通过对多频海底声学原位测试系统的测试信号进行基于小波分解的自相似性分析,发现信号在不同尺度上都相似于其本身,说明干扰信号与有效信号在频谱分布上并没有太多差异,通过频率域滤波难以消除干扰信号。将小波分析方法引入海底声学原位测试信号消除干扰信号处理中,利用小波对信号进行分解并经过小波系数选择与信号重构后,消除了干扰信号,并保留了有效信号。

关键词: 多频海底声学原位测试, 小波变换, 信号处理

Abstract: Multi-frequency seabed in situ sediment acoustic measurement system developed by the Second Institute of Oceanography , SOA, is the first system of same type in the country. The authors focuse on the primary results on the signal processing of the system. When contaminated by noise, the accurate identification of seabed sediment characteristics will be not easy. From the results of wavelet decomposition from measured signal, it can be found that the signal is similar to itself in different scales, which means that there is little difference in the signal and noise, leading to a hard denoising in frequency domain. Therefore, wavelet transform is applied to denoise signals of the in situ acoustic system. By wavelet method, the signal is decomposed and the wavelet coefficients are calculated. The reconstructed signal reveals true signal.

Key words: multi-frequency in situ sediment seabed acoustic measurement, wavelet transform, signal processing

中图分类号: 

  • P631.4
[1] 谭晓迪, 黄大年, 李丽丽, 马国庆, 张代磊. 小波结合幂次变换方法在边界识别中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(2): 420-432.
[2] 赵利, 李理, 董大伟. 基于小波变换的盆地沉积-构造波动分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1227-1236.
[3] 岳碧波,彭真明, 张启衡. α稳定分布地震信号特征指数估计方法[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2026-2034.
[4] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[5] 韩念龙, 刘闯, 庄立, 张巍. 基于不同小波变换与同态滤波结合的CBERS-02B卫星CCD图像的薄云去除[J]. J4, 2012, 42(1): 275-279.
[6] 张丽丽, 刘四新, 吴俊军, 张芝贤. 层状介质探地雷达信号Q值估计及反Q滤波[J]. J4, 2011, 41(1): 265-270.
[7] 卢文喜, 陈社明, 王晨子, 刘磊, 贾洪玮, 吕德全. 基于小波变换的大安地区年降水量变化特征[J]. J4, 2010, 40(1): 121-127.
[8] 房文静, 范宜仁,李霞,邓少贵. 基于测井数据小波变换的准层序自动划分[J]. J4, 2007, 37(4): 833-0836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!