J4 ›› 2011, Vol. 41 ›› Issue (1): 153-158.

• 地质工程与环境工程 • 上一篇    下一篇

贝叶斯网络在水资源管理中的应用

卢文喜|罗建男|鲍新华   

  1. 吉林大学 环境与资源学院| 长春 130026
  • 收稿日期:2010-06-02 出版日期:2011-01-26 发布日期:2011-01-26
  • 作者简介:卢文喜(1956-)|男|吉林德惠人|教授|博士生导师|主要从事地下水数值模拟与优化管理及生态水文等方面的研究|E-mail:luwenxi@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(41072171);国家“863”计划项目(2008AA06A410)

Application of Bayesian Network in Water Resource Management

LU Wen-xi, LUO Jian-nan, BAO Xin-hua   

  1. College of Environment and Resources, Jilin University, Changchun 130026|China
  • Received:2010-06-02 Online:2011-01-26 Published:2011-01-26

摘要:

为了解决水资源管理中具有不确定性的多目标决策问题,将贝叶斯网络方法引入水资源管理中。通过对实例系统中变量间相互关系的分析,构建描述变量间不确定性关系的贝叶斯网络模型,其中包括表示其依赖关系的有向无环图和表示其具体概率依赖程度的条件概率表,并在6个目标变量均达到预期目标的前提下进行概率推理。实例结果表明:当补偿款数额增加到500元/亩时,所有的目标变量均可达到最优,因此确定出政府应给农民补偿款的数额为500元/亩的合理水资源决策方案。贝叶斯网络以图模型的方式直观地表达了实例系统中变量之间的不确定性关系,概率推理的结果兼顾了环境效益以及农民的利益,使多个预期目标均达到了最优,有效地解决了水资源管理中具有不确定性的多目标决策问题。

关键词: 贝叶斯网络, 水资源管理, 不确定性

Abstract:

Bayesian network is applied in water resource management to deal with the uncertainty of multi-object decision-making problem. The relationship between variables is analyzed, and then Bayesian network model is constructed, including directed acyclic graph which describes the dependent relationship of variables and conditional probability tables which express the specific level of the dependency. On the premise that all the six objective variables achieve the intended goals, the probabilistic inference of Bayesian network is taken. Results of the case study show that the compensation amount increase to 500 yuan (RMB) per Mu(Mu≈666.666 7 m2), all of the objective variables could achieve optimization.  So the reasonable water resources decision scheme that the government should give the compensation of 500 yuan (RMB) per Mu to the farmers was proposed. Bayesian network can intuitively express the uncertain relationship between variables in the case study. The probabilistic inference result takes into the environmental benefit as well as the farmer’s benefit, so the multi-objective variables could achieve optimization. It is an effective method to deal with the multi-objective decision-making problem with uncertainty of water resource management.

Key words: Bayesian networks, water resource management, uncertainty

中图分类号: 

  • P641.8
[1] 束龙仓, 许杨, 吴佩鹏. 基于MODFLOW参数不确定性的地下水水流数值模拟方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1803-1809.
[2] 侯卫生, 杨翘楚, 杨亮, 崔婵婕. 基于Monte Carlo模拟的三维剖面地质界线不确定性分析[J]. 吉林大学学报(地球科学版), 2017, 47(3): 925-932.
[3] 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 876-885.
[4] 苏小四,杜守营,杜尚海,宋宪宗,邵广凯,王璜. 基于随机模拟的浑河冲洪积扇地区地下水压采风险预报[J]. 吉林大学学报(地球科学版), 2014, 44(3): 986-994.
[5] 刘佩贵, 陶月赞. 均衡法评价地下水可开采量的风险率[J]. J4, 2012, 42(4): 1125-1129.
[6] 刘佩贵,束龙仓. 傍河水源地地下水水流数值模拟的不确定性[J]. J4, 2008, 38(4): 639-0643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!