吉林大学学报(地球科学版)

• 地球探测与信息技术 • 上一篇    

核概率距离聚类方法及应用

陈永良,李学斌   

  1. 吉林大学综合信息矿产预测研究所,长春130026
  • 收稿日期:2012-05-25 出版日期:2013-01-26 发布日期:2013-01-26
  • 作者简介:陈永良(1965-),男,教授,主要从事矿产资源评价、数学地质方法、遥感图像处理和GIS应用等方面的研究,E-mail:chenyongliang2009@hotmail.com
  • 基金资助:

    国家自然科学基金项目 (40872193, 41072244, 41272360);国家自然科学基金重点项目(61133011)

Method and Application of Kernel Probabilistic Distance Clustering

Chen Yongliang, Li Xuebin   

  1. Institute of Mineral Resources Prognosis on Synthetic Information, Jilin University, Changchun130026, China
  • Received:2012-05-25 Online:2013-01-26 Published:2013-01-26

摘要:

研究聚类分析新方法一直是统计学和机器学习研究领域普遍关注的课题。针对概率距离聚类算法不能解决非线性可分聚类问题的缺欠,笔者应用核函数理论将该模型拓展成为一种能够解决非线性可分聚类问题的统计模型,称为核概率距离聚类分析模型。研制出一种应用新模型进行遥感图像非监督分类研究的实施策略和可行算法;在GDAL遥感图像数据输入输出函数库基础上,用VC++语言开发了遥感图像核概率距离聚类分析算法程序;用ERDAS软件提供的一幅7波段491像素×440像素大小的TM图像进行新方法分类应用实验研究。对比了新模型和其原版本的TM遥感图像非监督分类效果,结果表明新模型的非监督分类效果优于原有的分类模型。

关键词: 概率距离聚类, 核函数, 核概率距离聚类, 遥感图像, 非监督分类

Abstract:

Investigating a new clustering methods is always paid more attention by the researchers in statistics and machine learning fields. Noticing that probabilistic distance clustering cannot solve nonlinear clustering problems, the authors proposed a new nonlinear clustering method called kernel probabilistic distance clustering by extending probabilistic distance clustering algorithm with kernel function theories,and then laid out an executing strategy and feasible algorithm of the new model for the unsupervised classification of remotely sensed image data,and finally developed a visual C++ program of the new model for remotely sensed data classification on the basis of GDAL function library for the input and output of remotely sensed data. A TM image with seven bands and 491× 440 pixels in size provided by ERDAS software platform was applied to the experimental application of the new model for unsupervised classification. The authors compared the clustering performances of the new model and its original version in the unsupervised classification of the TM images. The experimental results show that the clustering performance of new model is better than that of the original linear version in unsupervised classification.

Key words: probabilistic distance clustering, kernel function, kernel probabilistic distance clustering, remotely sensed images, unsupervised classification

中图分类号: 

  • P628.1
[1] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378.
[2] 姜传金,陈树民,刘财,鹿琪,冯智慧. 基于Wigner双谱对角切片的谱分解技术在油气检测中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 1013-1021.
[3] 陈永良, 李学斌, 林楠. 遥感图像像素级异常识别的一种方法[J]. J4, 2012, 42(3): 881-886.
[4] 陈永良, 李学斌. 基于核最小二乘模型的矿产靶区预测[J]. J4, 2011, 41(3): 937-944.
[5] 陈永良, 李学斌. 基于核函数理论的系统聚类分析[J]. J4, 2010, 40(5): 1211-1216.
[6] 邓小英,李月. 基于Ricker子波核的支持向量回归方法及其在地震勘探记录去噪处理中的应用[J]. J4, 2007, 37(4): 821-0827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!