吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于 SIFT 算法的无人机遥感图像拼接技术

王 茜 a , 宁纪锋 a , 曹宇翔 a , 韩文霆 b   

  1. 西北农林科技大学 a. 信息工程学院; b. 机械与电子工程学院, 陕西 杨凌 712100
  • 收稿日期:2016-09-06 出版日期:2017-03-27 发布日期:2017-06-07
  • 作者简介: 王茜(1992— ), 女, 陕西扶风人, 西北农林科技大学硕士研究生, 主要从事机器视觉与图像分析研究, (Tel)86- 15667071036(E-mail)wangqian09021992@163. com; 宁纪锋(1975— ), 男, 陕西韩城人, 西北农林科技大学教授, 硕士 生导师, 主要从事计算机视觉与模式识别理论与应用研究, (Tel)86-15091857187(E-mail)jf_ning@ sina. com。
  • 基金资助:
     国家自然科学基金青年基金资助项目(31501228); 科技部国际合作基金资助项目(2014DFG72150); 杨凌示范区工业基金
    资助项目(2015GY-03); 陕西省自然科学基金资助项目(2015JM3110); 国家级大学生创新创业训练计划基金资助项目
    (201610712064)

Matching Technologies of UAV Remote Sensing Image Based on SIFT

WANG Qian a , NING Jifeng a , CAO Yuxiang a , HAN Wentin b   

  1. a. College of Information Engineering; b. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
  • Received:2016-09-06 Online:2017-03-27 Published:2017-06-07

摘要: 为了给农田研究人员提供高精度、 宽视野的图像, 在利用 SIFT(Scale-Invariant Feature Transform)算法初
步检测候选点步骤中, 加入自适应阈值去除部分候选特征点; 结合无人机图像的经纬度坐标及重叠区域位置关
系剔除部分无效特征点, 并进行特征点粗匹配; 利用随机采样一致算法消除误匹配点对, 并求解投影变换矩阵
完成相邻两幅农田遥感图像的拼接; 设计了金字塔拼接策略, 完成 128 幅高分辨率图像的拼接。 实验结果表
明, 基于 SIFT 算法, 利用改进的特征点精简方法, 特征点粗匹配时间平均减少了52%, 精匹配时间平均减少了
25%; 基于 6 个图像融合评价参数的对比实验发现, 从定性和定量两个方面, 基于多分辨率的图像融合均优于
其他融合算法。

关键词: 农田遥感图像拼接, 无人机, 图像融合, SIFT 算法, 特征点匹配

Abstract:  In order to provide a panoramic image with high precision and wide field, the main purpose of this
study is to achieve a high-resolution images stitching. For a large number of high-resolution farmland remote
sensing images taken by UAV(Unmanned Aerial Vehicle), to obtain the full panoramic farmland image,
the image mosaic algorithm is improved by combining with characteristics of UAV image. In detecting the
candidate points step preliminarily using SIFT ( Scale-Invariant Feature Transform) algorithm, we use
adaptive threshold to remove part of the candidate feature points. By combining with latitude, longitude
coordinates and the relative position relation of the overlapping area about UAV image, we remove part of
invalid feature points and make rough matching on feature point. For completing two adjacent farmland
remote sensing images stitching, we apply random sample consensus algorithm to eliminate mismatching
point, and solve the projective transformation matrix. In order to complete 128 high-resolution images
stitching, we design pyramid stitching strategy. The experimental results show that: with the improved
feature points streamline method on SIFT algorithm, the time needed for the rough feature points matching is
reduced by an average of 52% , and 25% reduction for Accurate feature points matching. In comparison
experiment based on six evaluation parameters, we found that the multi-resolution image fusion algorithm is
superior to other fusion algorithms in qualitative and quantitative analysis. The study provides an efficient
reference for a large number of high-resolution image stitching.

Key words: SIFT algorithm, image fusion, feature point matching, farmland remote sensing image stitching, unmanned aerial vehide(UAV)

中图分类号: 

  •