吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (4): 470-474.

• • 上一篇    下一篇

基于项目属性分类的协同过滤算法研究

吴佳婧1,贺嘉楠2,王越群2,董立岩2   

  1. 1. 哈尔滨工程大学 计算机科学与技术学院,哈尔滨150001; 2. 吉林大学 计算机科学与技术学院,长春130012
  • 出版日期:2018-07-24 发布日期:2019-01-18
  • 作者简介:吴佳婧( 1996— ) ,女,长春人,哈尔滨工程大学本科生,主要从事数据挖掘研究,( Tel) 86-15567870997 ( E-mail)451587391@ qq. com; 董立岩( 1966— ) ,男,长春人,吉林大学教授,博士生导师,主要从事数据挖掘研究,( Tel) 86-15943013891( E-mail) dongly@ jlu. edu. cn。
  • 基金资助:
    国家自然科学基金资助项目(61272209)

Research on Collaborative Filtering Algorithm Based on Items' Attribute Categories

WU Jiajing1,HE Jianan2,WANG Yuequn2,DONG Liyan2   

  1. 1. College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China;2. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Online:2018-07-24 Published:2019-01-18

摘要: 用户对项目的评分数据是传统协同过滤算法进行项目或用户推荐的唯一依据,项目或用户本身的属性特征并未进行过多考虑。为此,在计算项目之间的相似度时融合了项目标签属性,提高了项目推荐的准确率。具体方法是首先通过创建项目属性分类表,得到项目属性之间的差异度,然后将项目属性差异度融入pearson 相关系数公式中,计算项目之间的相似度。通过实验验证,改进后的方法比传统的基于项目的协同过滤算法的推荐结果平均偏差小,命中率高,推荐结果更加准确。

关键词: 协同过滤, 用户项目评分, 项目属性, pearson 相关系数

Abstract: The algorithm of collaborative filtering is only considered to analyze the user-item evaluation matrix traditionally. The properties of the item or the user are often ignored. In order to solve this problem and improve the accuracy of the algorithm of collaborative filtering recommendation,we apply the attribute categories of the items into the formula for calculating the similarity of items. The specific method is as follows: firstly,get the degree of difference between the item properties by creating the items' attribute categories table.Secondly,apply the degree of difference between the item properties into the pearson correlation formula and calculate the similarity between items. The experiment results show that the recommended MAE of the improved method is smaller and the hit rate is higher compared to the traditional collaborative filtering algorithm.

Key words: collaborative filtering, user program rating data, item properties, pearson correlation coefficient

中图分类号: 

  • TP391. 3