吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (5): 545-552.

• • 上一篇    下一篇

基于ANN 和Boosting 的教学质量评价方法

崔荣一a,赵亚慧a,崔旭a,尹哲峰b,张振国a   

  1. 延边大学a. 工学院; b. 教务处,吉林 延吉133002
  • 出版日期:2018-09-24 发布日期:2019-01-18
  • 作者简介:崔荣一( 1962— ) ,男,吉林延吉人,延边大学教授,博士,硕士生导师,主要从事智能信息处理研究,( Tel) 86- 13904433458( E-mail) cuirongyi@ ybu. edu. cn。
  • 基金资助:
    吉林省高等教育教学改革立项基金资助项目( 吉教高字[2012]45 号) ; 吉林省高等教育学会高教科研基金资助项目( 吉高学会[2017]9 号)

Evaluation of Teaching Quality Based on ANN and Boosting

CUI Rongyia,ZHAO Yahuia,CUI Xua,YIN Zhefengb,ZHANG Zhenguoa   

  1. a. College of Engineering; b. Educational Technology Center,Yanbian University,Yanji 133002,China
  • Online:2018-09-24 Published:2019-01-18

摘要: 针对学校教学质量传统评价方法中存在的线性化、静态化等缺陷,提出了更加客观、合理的智能评价方法。利用人工神经网络设计了智能评价器的方案,实现了评价因素到结果的非线性映射,采用不同时期发生的评价数据,通过机器学习方法确定当前阶段各评价因素对评价结果的作用参数,使动态权重能够适应不同时期的评价取向。评价器采用提升算法( Boosting) 集成3 个子评价器形成智能评价器,并通过多评价器集成运行规则进行智能评价。实践证明此方法相比传统的评价方法更能反映因素与结果之间的复杂关系及其动态特征,获得良好的评价结果。

关键词: 人工神经网络, 提升算法, 教学质量评价, 非线性动态模型

Abstract: To overcome the shortcomings of traditional approach to teaching quality evaluation of university,a more objective and reasonable intelligent evaluation method is proposed. According to the shortcomings of linear and static properties of traditional evaluation model,an implementation scheme of intelligent evaluator is proposed using ANN ( Artificial Neural Network) . The training sample set of the intelligent evaluator is constructed with the data produced by traditional model. The 3 sub-evaluators are integrated with boosting to compose the intelligent evaluator,and the running rules of the evaluator is described. It is verified by practice that the proposed method better reflects the complex and dynamic relation between factors and results,and
produces good evaluation results.

Key words: artificial neural network, Boosting, teaching quality evaluation, non-linear dynamitic model

中图分类号: 

  • TP391