吉林大学学报(信息科学版) ›› 2019, Vol. 37 ›› Issue (1): 75-79.

• • 上一篇    下一篇

基于PCA 的指节纹图像全局特征提取与识别

李温温1,王吉彬2   

  1. 1. 白城师范学院机械工程学院,吉林白城137000; 2. 63861 部队17 分队,吉林白城137000
  • 出版日期:2019-01-24 发布日期:2019-05-09
  • 作者简介:李温温( 1984— ) ,女,山西长治人,白城师范学院副教授,主要从事模式识别与智能控制研究,( Tel) 86-13634360943( E-mail) liwenwen1017@126. com。
  • 基金资助:
    吉林省教育厅“十三五”科学技术基金资助项目( JJKH20170003KJ)

Global Feature Extraction and Recognition for Finger Knuckle Print Image Based on PCA

LI Wenwen1,WANG Jibin2   

  1. 1. College of Mechanical Engineering,Baicheng Normal University,Baicheng 137000,China;
    2. 17th Group,63861 Military,Baicheng 137000,China
  • Online:2019-01-24 Published:2019-05-09

摘要: 在基于PCA( Principal Component Analysis) 的指节纹图像全局特征提取和识别中,为了提高准确率,在传统方法的基础上,通过实验验证了4 指指节纹对于识别结果有不同的分类权重( 贡献率) 。改进了已有研究成果中对4 指等权重分配的方法。实验结果显示,和4 指等权重分配方法达到94. 4%的识别率需要32 维特征相比,4 指权重比为2 ∶ 2 ∶ 3 ∶ 2 时,取21 维特征即可达到最高识别率94. 4%。因此该方法可大大降低特征维数,提高识别速度。

关键词: 指节纹, 全局特征提取, 特征识别, 主成分分析

Abstract: In the global feature extraction and recognition of finger knuckle print based on PCA ( Principal Component Analysis) ,in order to improve the accuracy,we prove that the knuckle patterns of four fingers have different classification weights,i. e. contribution rate to identification results according to researches on traditional methods. This way improved the equal weight distribution method shown in existing research consequences. The experiment results show that when the four-finger weight ratio is 2 ∶ 2 ∶ 3 ∶ 2,the maximum recognition rate,which is 94. 4%,can be achieved when 21 dimensional characteristics are used. In contrast,94. 4% can be achieved when 32 dimensional characteristics are used in the equal weight distribution.Therefore,this method can reduce feature dimensions and improve the recognition speed.

Key words: finger knuckle print, global feature extraction, feature recognition, principal component analysis( PCA)

中图分类号: 

  • TP391